97 research outputs found
Fourier basis for the engineering assessment of cracks in residual stress fields
A theoretical basis is presented for determining the significance of a residual stress distribution of arbitrary shape on the crack tip stress intensity factor for a centre-cracked plate as a function of crack length. The Fourier series based approach enables one to increasingly add more spatial definition to the stress field and thereby determine the level of detailed knowledge of the residual stress required to make a reliable assessment of structural integrity. The approach is applied to examples of measured symmetric distributions of residual stresses in welded plates and used to determine the significance of residual stress lengthscales in fracture mechanics analysis
Prediction of residual stresses in girth welded pipes using an artificial neural network approach
Management of operating nuclear power plants greatly relies on structural integrity assessments for safety critical pressure vessels and piping components. In the present work, residual stress profiles of girth welded austenitic stainless steel pipes are characterised using an artificial neural network approach. The network has been trained using residual stress data acquired from experimental measurements found in literature. The neural network predictions are validated using experimental measurements undertaken using neutron diffraction and the contour method. The approach can be used to predict through-wall distribution of residual stresses over a wide range of pipe geometries and welding parameters thereby finding potential applications in structural integrity assessment of austenitic stainless steel girth welds
Study on the Effect of Post Weld Heat Treatment Parameters on the Relaxation of Welding Residual Stresses in Electron Beam Welded P91 Steel Plates
AbstractResidual stresses are created by localised heating effects that occur during the welding process. Post weld heat treatment (PWHT) is the most convenient method for stress relief of welds. But PWHT cannot completely eliminate the residual stresses. So, it is essential to determine the influence of PWHT parameters like holding temperature and time on the stress relaxation for optimising the process. The selected material is modified 9Cr-1Mo (Grade 91) steel in the form of plates welded together using a high intensity electron beam. To facilitate the study, a numerical thermo-elastic-plastic model has been developed to simulate the welding of the plates. As P91 steels undergo phase transformations, the corresponding volumetric change and transformation plasticity are taken into consideration during the analysis and welding residual stresses are predicted. PWHT is implemented using Norton creep law and the residual stresses after relaxation are determined. The developed model and the predictions are validated using neutron diffraction measurements on as welded and post weld heat treated plates. A good agreement has been achieved between the measurements and predictions. The validated model has been used to study the effect of variation of heat treatment parameters like holding temperature and time on the relaxation of welding stresses
Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study
Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of ‘innate scatter’ and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated
Measuring the orbital angular momentum spectrum of an electron beam
Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material’s structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron’s OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy
Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91
This paper is a research output of DMW-Creep project which is part of a national UK programme through the RCUK Energy programme and India's Department of Atomic Energy. The research is focussed on understanding the characteristics of welded joints between austenitic stainless steel and ferritic steel that are widely used in many nuclear power generating plants and petrochemical industries as well as conventional coal and gas-fired power systems. The members of the DMW-Creep project have under- taken parallel round robin activities measuring the residual stresses generated by a dissimilar metal weld (DMW) between AISI 316L(N) austenitic stainless steel and P91 ferritic-martensitic steel. Electron beam (EB) welding was employed to produce a single bead weld on a plate specimen and an additional smoothing pass (known cosmetic pass) was then introduced using a defocused beam. The welding re- sidual stresses have been measured by five experimental methods including (I) neutron diffraction (ND), (II) X-Ray diffraction (XRD), (III) contour method (CM), (IV) incremental deep hole drilling (iDHD) and (V) incremental centre hole drilling (iCHD). The round robin measurements of weld residual stresses are compared in order to characterise surface and sub-surface residual stresses comprehensively
Measurement of Creep Deformation across Welds in 316H Stainless Steel Using Digital Image Correlation
Spatially resolved measurement of creep deformation across weldments at high temperature cannot be achieved using standard extensometry approaches. In this investigation, a Digital Image Correlation (DIC) based system has been developed for long-term high-temperature creep strain measurement in order to characterise the material deformation behaviour of separate regions of a multi-pass weld. The optical system was sufficiently stable to allow a sequence of photographs to be taken suitable for DIC analysis of creep specimens tested at a temperature of 545 °C for over 2000 h. The images were analysed to produce local creep deformation curves from two cross-weld samples cut from contrasting regions of a multi-pass V-groove weld joining thick-section AISI Type 316H austenitic stainless steel. It is shown that for this weld, the root pass is the weakest region of the structure in creep, most likely due to the large number of thermal cycles it has experienced during the fabrication process. The DIC based measurement method offers improved spatial resolution over conventional methods and greatly reduces the amount of material required for creep characterisation of weldments
BGWM as Second Constituent of Complex Matrix Model
Earlier we explained that partition functions of various matrix models can be
constructed from that of the cubic Kontsevich model, which, therefore, becomes
a basic elementary building block in "M-theory" of matrix models. However, the
less topical complex matrix model appeared to be an exception: its
decomposition involved not only the Kontsevich tau-function but also another
constituent, which we now identify as the Brezin-Gross-Witten (BGW) partition
function. The BGW tau-function can be represented either as a generating
function of all unitary-matrix integrals or as a Kontsevich-Penner model with
potential 1/X (instead of X^3 in the cubic Kontsevich model).Comment: 42 page
ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a
"Migrants, States, and EU Citizenship's Unfulfilled Promise"
A constant aim of EU citizenship, and indeed the entire project of European integration, has always been to lower barriers and create a common space. If the complete elimination of national borders remains elusive, their importance has been diminished in striking ways by the development of EU citizenship and the ban against nationality based discrimination. Yet the barriers to free movement have been lowered in differential ways. Most citizens of EU member states now enjoy residence, employment and other rights throughout Europe. The extension of some rights to some categories of citizens of some new member states is admittedly sometimes subject to transition periods, but these expire. By contrast, third country nationals -- individuals who do not hold citizenship of one of the member states, even though they may have resided for many years, or even been born in Europe -- remain largely excluded from the benefits of EU citizenship. Various initiatives over the years have opened up limited rights for third country nationals. But the difficulty of enacting these rights, and current moves to more restrictive immigration and naturalization policies, highlight the continuing exclusivity of EU citizenship: immigrants migrate to national polities, and they become European only by virtue of incorporation into national states. This means that EU citizenship's transformative potential remains unrealized.Glendon College (York University
- …