66 research outputs found

    Detailed analysis of excited-state systematics in a lattice QCD calculation of gA

    Get PDF
    Excited state contamination remains one of the most challenging sources of systematic uncertainty to control in lattice QCD calculations of nucleon matrix elements and form factors: early time separations are contaminated by excited states and late times suffer from an exponentially bad signal-to-noise problem. High-statistics calculations at large time separations 1 fm are commonly used to combat these issues. In this work, focusing on gA, we explore the alternative strategy of utilizing a large number of relatively low-statistics calculations at short to medium time separations (0.2-1 fm), combined with a multistate analysis. On an ensemble with a pion mass of approximately 310 MeV and a lattice spacing of approximately 0.09 fm, we find this provides a more robust and economical method of quantifying and controlling the excited state systematic uncertainty. A quantitative separation of various types of excited states enables the identification of the transition matrix elements as the dominant contamination. The excited state contamination of the Feynman-Hellmann correlation function is found to reduce to the 1% level at approximately 1 fm while, for the more standard three-point functions, this does not occur until after 2 fm. Critical to our findings is the use of a global minimization, rather than fixing the spectrum from the two-point functions and using them as input to the three-point analysis. We find that the ground state parameters determined in such a global analysis are stable against variations in the excited state model, the number of excited states, and the truncation of early-time or late-time numerical data

    Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium.

    Get PDF
    Development Psychopathology in context: famil

    Genetic insights into resting heart rate and its role in cardiovascular disease.

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development

    Identification and dynamics of a cryptic suture zone in tropical rainforest

    No full text
    Suture zones, shared regions of secondary contact between long-isolated lineages, are natural laboratories for studying divergence and speciation. For tropical rainforest, the existence of suture zones and their significance for speciation has been controversial. Using comparative phylogeographic evidence, we locate a morphologically cryptic suture zone in the Australian Wet Tropics rainforest. Fourteen out of 18 contacts involve morphologically cryptic phylogeographic lineages, with mtDNA sequence divergences ranging from 2 to 15 per cent. Contact zones are significantly clustered in a suture zone located between two major Quaternary refugia. Within this area, there is a trend for secondary contacts to occur in regions with low environmental suitability relative to both adjacent refugia and, by inference, the parental lineages. The extent and form of reproductive isolation among interacting lineages varies across species, ranging from random admixture to speciation, in one case via reinforcement. Comparative phylogeographic studies, combined with environmental analysis at a fine-scale and across varying climates, can generate new insights into suture zone formation and to diversification processes in species-rich tropical rainforests. As arenas for evolutionary experimentation, suture zones merit special attention for conservation

    Insulin Fibril Nucleation: The Role of Prefibrillar Aggregates

    Get PDF
    Dynamic light scattering and Fourier transform infrared spectroscopy were used to study the formation of prefibrillar aggregates and fibrils of bovine pancreatic insulin at 60°C and at pH 1. The kinetics of disintegration of the prefibrillar aggregates were also studied using these techniques after a quench to 25°C. These experiments reveal that formation of prefibrillar aggregates is reversible under the solution conditions studied and show that it is possible to significantly reduce the nucleation (lag) times associated with the onset of fibril growth in bovine pancreatic insulin solutions by increasing the concentration of prefibrillar aggregates in solution. These results provide convincing evidence that less structured prefibrillar aggregates can act as fibril-forming intermediates
    corecore