50 research outputs found

    Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV

    No full text
    Abstract Background Regulated protein-protein interactions (PPIs) are pivotal molecular switches that are important for the regulation of signaling processes within eukaryotic cells. Cellular signaling is altered in various disease conditions and offers interesting options for pharmacological interventions. Constitutive PPIs are usually mediated by large interaction domains. In contrast, stimulus-regulated PPIs often depend on small post-translational modifications and are thus better suited targets for drug development. However, the detection of modification-dependent PPIs with biochemical methods still remains a labour- and material-intensive task, and many pivotal PPIs that are potentially suited for pharmacological intervention most likely remain to be identified. The availability of methods to easily identify and quantify stimulus-dependent, potentially also transient interaction events, is therefore essential. The assays should be applicable to intact mammalian cells, optimally also to primary cells in culture. Results In this study, we adapted the split-TEV system to quantify phosphorylation-dependent and transient PPIs that occur at the membrane and in the cytosol of living mammalian cells. Split-TEV is based on a PPI-induced functional complementation of two inactive TEV protease fragments fused to interaction partners of choice. Genetically encoded transcription-coupled and proteolysis-only TEV reporter systems were used to convert the TEV activity into an easily quantifiable readout. We measured the phosphorylation-dependent interaction between the pro-apoptotic protein Bad and the adapter proteins 14-3-3ε and ζ in NIH-3T3 fibroblasts and in primary cultured neurons. Using split-TEV assays, we show that Bad specifically interacts with 14-3-3 isoforms when phosphorylated by protein kinase Akt-1/PKB at Ser136. We also measured the phosphorylation-dependent Bad/14-3-3 interactions mediated by endogenous and transient Akt-1 activity. We furthermore applied split-TEV assays to measure the phosphorylation-dependent interactions of Neuregulin-1-stimulated ErbB4 receptors with several adapter proteins. Conclusion Split-TEV assays are well suited to measure phosphorylation-dependent and transient PPIs that occur specifically at the membrane and in the cytosol of heterologous and primary cultured mammalian cells. Given the high sensitivity of the split-TEV system, all assays were performed in multi-plate formats and could be adapted for higher throughput to screen for pharmacologically active substances.</p

    GOATOOLS: A Python library for Gene Ontology analyses.

    Get PDF
    The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a "flat" list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. &lt;p/&gt;Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. &lt;p/&gt;Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. &lt;p/&gt;Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    GOATOOLS: A Python library for Gene Ontology analyses

    Get PDF
    The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a “flat” list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools

    Linking cellular signalling to gene expression using EXT-encoded reporter libraries

    No full text

    Integrated measurement of Split TEV and Cis-regulatory assays using EXT encoded reporter libraries

    No full text

    Integrated analysis of receptor activation and downstream signaling with EXTassays

    No full text
    corecore