600 research outputs found

    Analysis of the diffusion process by pH indicator in microfluidic chips for liposome production

    Get PDF
    In recent years, the development of nano- and micro-particles has attracted considerable interest from researchers and enterprises, because of the potential utility of such particles as drug delivery vehicles. Amongst the different techniques employed for the production of nanoparticles, microfluidic-based methods have proven to be the most effective for controlling particle size and dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study, we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often governed by diffusive mass transfer of chemical species at the liquid interface between a solvent (i.e., alcohol) and a non-solvent (i.e., water). In this work, we developed a new approach for the analysis of mixing processes within microfluidic devices. The method relies on the use of a pH indicator, and we demonstrate its utility by characterizing the transfer of ethanol and water within two different microfluidic architectures. Our approach represents an effective route to experimentally characterize diffusion and advection processes governing the formation of vesicular/micellar systems in microfluidics, and can also be employed to validate the results of numerical modelling

    Animal models of rheumatoid pain: experimental systems and insights.

    Get PDF
    Severe chronic pain is one of the hallmarks and most debilitating manifestations of inflammatory arthritis. It represents a significant problem in the clinical management of patients with common chronic inflammatory joint conditions such as rheumatoid arthritis, psoriatic arthritis and spondyloarthropathies. The functional links between peripheral inflammatory signals and the establishment of the neuroadaptive mechanisms acting in nociceptors and in the central nervous system in the establishment of chronic and neuropathic pain are still poorly understood, representing an area of intense study and translational priority. Several well-established inducible and spontaneous animal models are available to study the onset, progression and chronicization of inflammatory joint disease, and have been instrumental in elucidating its immunopathogenesis. However, quantitative assessment of pain in animal models is technically and conceptually challenging, and it is only in recent years that inflammatory arthritis models have begun to be utilized systematically in experimental pain studies using behavioral and neurophysiological approaches to characterize acute and chronic pain stages. This article aims primarily to provide clinical and experimental rheumatologists with an overview of current animal models of arthritis pain, and to summarize emerging findings, challenges and unanswered questions in the field

    A NEW SHORT VERSION OF INTERNET GAMING DISORDER-20: AN EXPLORATORY STRUCTURAL EQUATION MODELING

    Get PDF
    Objective: The purpose of this paper was to contribute to the psychometric properties and dimensionality of the IGD-20. Method: An online survey was completed by 392 Italian online gamers (Mage = 29.2, SD = 11.3; 45.2% males). A battery of self-report questionnaires was administered to assess internet gaming disorder, internet addiction, loneliness, anxiety, depression, stress, social-interaction anxiety, self-esteem, and perceived social support. To test the factor structure of IGD-20, both traditional (i.e., EFA and CFA) and innovative (i.e., ESEM) techniques were applied. Convergent, concurrent, discriminant, and criterion-related validity were evaluated. Results: Our study revealed the outperforming 3-factor ESEM model (χ2=39.951, p = 0.0021; RMSEA = 0.056, 90% C.I. [0.032 - 0.079]; CFI = 0.986; TLI = 0.965; and SRMR = 0.017; ω = .76, .77, and .79, respectively) as a new short version (IGD- 10SV) for the IGD-20. The validity of the IGD-10SV was supported by significant associations with theoretically related measures. Conclusions: The current findings support the adoption of the analytic ESEM approach for complex multidimensional measures and the use of the IGD-10SV for the assessment of internet gaming disorder

    Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations

    Get PDF
    RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulationswith nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields

    The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site

    Get PDF
    AbstractBackground: Hepatocyte growth factor (HGF) is a multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. The N-terminal (N) domain of HGF, containing a hairpin-loop region, is important for receptor binding and the potent biological activities of HGF. The N domain is also the primary binding site for heparin or heparan sulfate, which enhances receptor/ligand oligomerization and modulates receptor-dependent mitogenesis. The rational design of artificial modulators of HGF signaling requires a detailed understanding of the structures of HGF and its receptor, as well as the role of heparin proteoglycan; this study represents the first step towards that goal.Results: We report here a high-resolution solution structure of the N domain of HGF. This first structure of HGF reveals a novel folding topology with a distinct pattern of charge distribution and indicates a possible heparin-binding site.Conclusions: The hairpin-loop region of the N domain plays a major role in stabilizing the structure and contributes to a putative heparin-binding site, which explains why it is required for biological functions. These results suggest several basic and/or polar residues that may be important for use in further mutational studies of heparin binding

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Identification and Dynamics of a Heparin-Binding Site in Hepatocyte Growth Factor †

    Get PDF
    Hepatocyte growth factor (HGF) is a heparin-binding, multipotent growth factor that transduces a wide range of biological signals, including mitogenesis, motogenesis, and morphogenesis. Heparin or closely related heparan sulfate has profound effects on HGF signaling. A heparin-binding site in the N-terminal (N) domain of HGF was proposed on the basis of the clustering of surface positive charges [Zhou, H., Mazzulla, M. J., Kaufman, J. D., Stahl, S. J., Wingfield, P. T., Rubin, J. S., Bottaro, D. P., and Byrd, R. A. (1998) Structure 6, 109-116]. In the present study, we confirmed this binding site in a heparin titration experiment monitored by nuclear magnetic resonance spectroscopy, and we estimated the apparent dissociation constant (K(d)) of the heparin-protein complex by NMR and fluorescence techniques. The primary heparin-binding site is composed of Lys60, Lys62, and Arg73, with additional contributions from the adjacent Arg76, Lys78, and N-terminal basic residues. The K(d) of binding is in the micromolar range. A heparin disaccharide analogue, sucrose octasulfate, binds with similar affinity to the N domain and to a naturally occurring HGF isoform, NK1, at nearly the same region as in heparin binding. (15)N relaxation data indicate structural flexibility on a microsecond-to-millisecond time scale around the primary binding site in the N domain. This flexibility appears to be dramatically reduced by ligand binding. On the basis of the NK1 crystal structure, we propose a model in which heparin binds to the two primary binding sites and the N-terminal regions of the N domains and stabilizes an NK1 dimer

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives
    • …
    corecore