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Background:  Hepatocyte growth factor (HGF) is a multipotent growth factor
that transduces a wide range of biological signals, including mitogenesis,
motogenesis, and morphogenesis. The N-terminal (N) domain of HGF,
containing a hairpin-loop region, is important for receptor binding and the
potent biological activities of HGF. The N domain is also the primary binding
site for heparin or heparan sulfate, which enhances receptor/ligand
oligomerization and modulates receptor-dependent mitogenesis. The rational
design of artificial modulators of HGF signaling requires a detailed
understanding of the structures of HGF and its receptor, as well as the role of
heparin proteoglycan; this study represents the first step towards that goal.

Results: We report here a high-resolution solution structure of the N domain of
HGF. This first structure of HGF reveals a novel folding topology with a distinct
pattern of charge distribution and indicates a possible heparin-binding site.

Conclusions:  The hairpin-loop region of the N domain plays a major role in
stabilizing the structure and contributes to a putative heparin-binding site, which
explains why it is required for biological functions. These results suggest several
basic and/or polar residues that may be important for use in further mutational
studies of heparin binding.

Introduction
Hepatocyte growth factor (HGF) [1,2] is the prototype of a
family of growth factors that resemble the blood pro-
teinase plasminogen in sequence, domain organization,
and mechanism of activation. As a mitogen, motogen, and
morphogen, HGF mediates crucial aspects of develop-
ment, maintenance, and regeneration of a wide variety of
tissues and organs by inducing growth, movement, and
differentiation of target cells. HGF is also implicated in
the growth, invasion, and metastasis of tumor cells (for
reviews see [3–6]). Mature HGF is composed of a 69 kDa
α chain and a 34 kDa β chain. The α chain contains a well
defined N-terminal domain (N; residues 31–127) followed
by four ‘kringle’ domains (K1–K4). The β chain resembles
a serine protease in sequence, but has no protease activity.

The biological activities of HGF are mediated by its recep-
tor, c-Met, a proto-oncogene product with an intracellular
tyrosine kinase domain [7–9]. Two naturally occurring,
truncated HGF isoforms, NK1 (extending through K1) and
NK2 (extending through K2), also bind c-Met and retain
some degree of motogenic activity but differ in their abili-
ties to stimulate DNA synthesis [10,11]. The receptor-
binding determinants of HGF seem to reside primarily in
the N and K1 domains. HGF also binds to heparin or

heparan sulfate present on the cell surface or in the extra-
cellular matrix. These glycosaminoglycans were found to
promote ligand dimerization and enhance the proliferative
activity of HGF or its variants NK1 and NK2 [12–14].
Furthermore, HGF isoforms are unable to bind c-Met in a
heparan sulfate deficient cell; however, the activity was
restored by addition of heparin, suggesting that heparin-like
molecules may be required in the activation of c-Met [14].

The N domain of HGF plays an essential role in interac-
tions with the c-Met receptor and heparin. This domain
contains a hairpin-loop region (residues 70–96), character-
ized by two disulfide bonds; deletion of this region abol-
ishes both the c-Met and heparin-binding abilities of
HGF [15–17]. Similar hairpin loop regions are found in
other proteins, including plasminogen and macrophage-
stimulating protein [18]; activation of plasminogen results
in deletion of this region. Early studies suggested that, in
addition to the N domain, K2 may participate in HGF–
heparin interactions [18]. More recently, however, the N
domain expressed alone was shown to retain the heparin-
binding properties of full-length HGF [14].

To date there is no experimental structural data for HGF
or its domains. The structures of the kringle and serine
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protease domains of HGF have been modeled based on
sequence homology with proteins of known structures
[16,19,20]. The hairpin-loop region has also been modeled,
primarily using disulfide constraints [20], as there is no
structural data available for the hairpin loop containing
domains of plasminogen-related proteins. Because of the
important roles that the hairpin-loop region plays in c-Met
and heparin binding, our initial studies on HGF have
focused on the N domain. 

Here we report the first structural information for HGF, in
the form of the solution structure of the N domain. The
structure shows a novel folding motif and a major role for
the hairpin-loop region in organizing and stabilizing the
fold. The calculated surface positive charge distribution
reveals a distinct area with high electrostatic potential,
indicating a possible heparin-binding site. Correlations of
our data with previous mutational studies are discussed.

Results 
The recombinant N domain appears to fold in the same
fashion as that found in full-length HGF. Weighted
average circular dichroism (CD) spectra of the N domain
and the first kringle (K1) domain match perfectly the
spectrum of biologically active, recombinant NK1 [21].
Furthermore, 1H and 15N NMR chemical shifts for the
residues in the N domain exhibit a close similarity
between the spectra of N and NK1 (data not shown). 

The N domain exhibits good chemical shift dispersion as
evidenced in a 1H-15N correlation spectrum (Figure 1).
Backbone NH resonance assignments were made for all
residues except for the three prolines, Gly31–Asn37,
Asn77 and Gly79. A weak and broadened peak was tenta-
tively assigned to the amide of Lys78. The lack of NH
resonances in the N-terminal region and residues 77–79
suggest that these regions are involved in intermediate
conformational exchange. Sidechain carbon, proton, and
nitrogen assignments for other regions are nearly com-
plete. Structure calculations were based on approximately
2000 distance restraints obtained from several NOESY
(nuclear Overhauser effect spectroscopy) spectra, as well
as hydrogen bonds and measured torsion angles (for
details see Materials and methods section).

Structure description
The overall structure of the N domain is well defined
(Figure 2; Table 1) except for Asn77–Gly79 and the
N-terminal seven residues in which NMR data were not
observed or the resonance assignments were tentative.
The middle of the structure is a five-stranded antiparallel
β sheet formed by residues 42–46 (β1), 60–63 (β2), 86–90
(β3), 95–99 (β4), and 117–121 (β5), arranged in the spatial
order β1–β5–β3–β4–β2 (Figure 3). The β sheet is flanked
on one side by a two-turn α helix (residues 67–75), a short
310 helix (residues 39–41), and the N-terminal residues; on

the other side it is flanked by two extended loops
(residues 47–59 and 100–116) joining the opposite ends of
the β strands. This organization makes a three-layered
sandwich structure. NOE patterns between residues 49–51
and residues 109–111, along with their Cα and CO carbon
chemical shift indices [22] and 3JHNHα coupling constants
[23], indicate that these regions form a sheet-like struc-
ture. A hydrophobic core is formed primarily by nonpolar
residues in strand β5 and the β-hairpin structure formed
by β3 and β4. Backbone amides in these three strands are
strongly protected from hydrogen exchange with solvent.
The two extended loops run across the back of the central
β sheet, shielding the core residues from solvent.

Structure of the hairpin-loop region 
The hairpin-loop region is composed of the α helix and
strands β3 and β4 in the central β sheet (Figure 4). The
inner Cys74–Cys84 disulfide linkage connects the C ter-
minus of the α helix and the N terminus of strand β3, gen-
erally resembling the fold that was previously modeled
based on disulfide restraints [20]. The outer Cys70–Cys96
disulfide linkage connects the middle of the helix and the
middle of strand β4. The hairpin-loop region has a fold of
the type α–loop–β–loop–β, but not α–loop–β–loop–α as
previously suggested [20]. The α–loop–β–loop–β struc-
ture exposes Arg93 on a surface separate from the surface
containing Arg73 and Arg76, which is different from the
modeled structure. The four cysteines participate in favor-
able interactions with several aromatic rings, including
those of Phe87 and Trp98. The interacting sulfur atoms
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Figure 1

Two-dimensional 1H-15N correlation spectrum of the N domain of HGF,
labeled with assignments of backbone amides and sidechain NH2
groups.
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express an affinity towards the edge of the aromatic rings,
as has been found in many other proteins [24]. The back-
bone structure of the hairpin-loop region, except for
Arg76–Gly79, is fairly rigid, indicated by the small devia-
tions between the 20 NMR structures (Figure 2). Residues
77–79 reside in the loop joining the α helix and strand β3.
This region is likely to be involved in intermediate confor-
mational exchange, suggested by the absence or broaden-
ing of amide cross-peaks.

Identification of a possible heparin-binding site
Studies of several heparin-binding proteins suggest that
binding occurs between specific domains of clustered basic
amino acids and the sulfate and carboxylate groups of
heparin [25]. The N domain contains 23 lysine and arginine
residues, seven of which are located in the hairpin-loop
region, and it is reasonable to suggest that some spatial clus-
ters of these residues are involved in heparin binding.

A comparison of the heparin-binding site of basic fibro-
blast growth factor (bFGF) with the structure of the N
domain reveals distinct patterns of basic charge distribu-
tion. The surface of bFGF bound to heparin [26] has high
positive electrostatic potential (Figure 5a), where heparin
binding is stabilized by charge interactions with lysine
and arginine residues, as well as hydrogen bonds with
asparagine and glutamine sidechains. In the N domain, an
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Figure 2

Stereo diagram of the N domain of HGF.
(a) Superposition of the backbone heavy
atoms (N, Cα and C′) of 20 NMR structures
for the N domain of HGF. (b) Backbone
diagram of the restrained minimized average
structure with every tenth residue labeled.
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Table 1

Structural statistics and root mean square deviations for 20
NMR structures of the N domain of HGF.

Structural statistics* <SA> <SA>r

Rmsd from experimental distance (Å)
and dihedral angle (°) restraints†

all (1977) 0.013 ± 0.007 0.010
interresidue |i–j| >4 (633) 0.008 ± 0.001 0.007
interresidue 1 ≤|i–j|≤4 (620) 0.009 ± 0.001 0.009
intraresidue (724) 0.014 ± 0.002 0.014
hydrogen bonds (20) 0.013 ± 0.007 0.010
dihedral φ (37) 0.74 ± 0.18 0.60

Rmsd from idealized geometry
used within X-PLOR

bonds (Å) 0.0037 ± 0.0001
angles (°) 0.65 ± 0.01
impropers (°) 0.48 ± 0.18

Cartesian coordinates rmsd ‡

<SA> versus <SA> all 0.37 ± 0.007§ 0.91 ± 0.09#

*<SA> are the 20 NMR-derived structures. <SA> is the mean
structure obtained by averaging the coordinates of the 20 structures.
<SA>r is the restrained minimized average structure. For <SA>, the
rmsd is the average rmsd and the standard deviations for the 20
structures. †None of the structures have distance violations ≥ 0.5 Å or
dihedral angle violations ≥ 5°. ‡The rmsd between the 20 structures
and the mean coordinates for residues 40–124. §Values for backbone
atoms; #values for all nonhydrogen atoms.



area containing basic residues in strand β2 and basic and
polar residues in the α helix of the hairpin loop also has

high positive potential (Figure 5b). This distinct area,
which may serve as a heparin-binding site, includes Lys60,
Lys62, Arg73, Arg76, and Lys78 (Figure 6a). These residues
form an arch of positive charges on the surface, with
Lys60, Lys62, and Arg73 at the center. This region also
contains the highest density of asparagine and glutamine
residues, which are clustered on one side of the α helix
near the high positive potential area. Although there is
some degree of uncertainty in sidechain orientation due to
intrinsic flexibility (e.g. residues 76 and 78) or because of
the lack of distance restraints in the unbound form of the
protein, this does not seem to change the clustering of
positive charges in this region (Figure 6b).

Discussion
Role of the hairpin loop
The hairpin-loop region consists of an α helix followed by
a β-hairpin structure. Given the constraints imposed by
the two disulfide bridges, it is reasonable to believe that
the α–loop–β–loop–β motif is shared by the hairpin-loop
regions of other plasminogen-related proteins. The
hairpin-loop region plays a major role in organizing the
protein scaffold and in contributing a number of residues,
including several aromatic residues, to the hydrophobic
core. In addition to its role in stabilizing the fold, this
region also forms part of the putative heparin-binding
site. The marked decrease in heparin- and receptor-
binding affinities of HGF after deletion of the hairpin
loop [17,18] is likely to be due to the loss of a binding
epitope in the native structure of the N domain. It is
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Figure 3

Solution structure and secondary structure
alignment. (a) Ribbon plot depicting the
structure of the N domain of HGF. The
structure was generated by averaging 20
NMR structures followed by restrained
minimization. Helices are shown in red and
yellow, β strands are in blue. (b) Sequence
and secondary structure of the N domain; the
numbering scheme follows that in [21]. The
hairpin-loop sequence, highlighted in bold
letters, extends from Ala67 to Phe99 based
on the structure. The β strands are indicated
by arrows and the helices by rectangles.
(Ribbon plot was generated with the program
MOLMOL [41].)
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Figure 4

Structure of the hairpin-loop region. Secondary structure elements are
colored as described in Figure 3a; the two disulfide bonds are shown
in yellow. Also shown (in green) are Phe87 and Trp98 with their rings
interacting with sulfur atoms.



possible that a fragment of this domain containing the
hairpin-loop region is able to retain some elements of the
native fold, especially in the presence of heparin which
may stabilize the fold. Indeed, a proteolytic peptide frag-
ment, Phe42–Glu111, exhibits a transition from a random
structure to a β sheet like structure upon high-affinity
binding to heparin, as shown by CD spectra [27].

Correlations with heparin-binding studies
Several biochemical studies of heparin-binding have
yielded inconclusive results concerning which residues

are involved in binding. A correlation between the net
charge of the hairpin loop and the heparin-binding abili-
ties of HGF and closely related proteins has been noted.
In addition, a proteolytic peptide fragment of HGF,
Asp68–Glu111, has been shown to bind heparin with high
affinity [27]. Based on the N domain structure, however, it
is not clear that this peptide would retain native folding
without the flanking strands of the central β sheet. Further-
more, alanine substitutions of several basic residues in this
region caused only small reductions in heparin binding
[14]. These data suggest that the basic and polar residues in
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Figure 5

Front and back views of the surface
electrostatic potential maps of (a) bFGF and
(b) the N domain of HGF. The positive
potential area is shown in blue; the negative
potential is in red. Arrows indicate the
heparin-binding site of bFGF and the potential
heparin-binding site of the N domain of HGF.
(Figures were generated with the program
GRASP [42].)

Figure 6

Residues that may have biological
significance. (a) The basic residues that form
the potential heparin-binding site indicated in
Figure 5b are shown in red. Yellow spheres
indicate the two basic residue clusters in the
hairpin-loop region that have been subjected
to alanine-substitution studies of heparin
binding [14]. Green spheres indicate the
residues that either reduce receptor binding
or the biological activities of the HGF variant
NK1 upon alanine substitution [16]. (b)
Overlay of 20 NMR structures of the putative
heparin-binding site, showing the dispersion
in sidechain orientations of the basic residues
(shown in red). The structure is slightly rotated
relative to (a) for more clarity. (The backbone
trace diagram was generated with the
program RASMOL [43].)



the hairpin loop which are not clustered (e.g. Asn72 and
Arg73), as well as residues outside the hairpin loop (e.g.
Lys60 and Lys62), may contribute to heparin binding. This
view is supported by the structural data presented here.

Compared to bFGF, the N domain exhibits a wider distri-
bution of basic residues over its surface, although there is
a single, predominant positive potential area. The two
basic residue clusters in the hairpin-loop region (Lys91,
Arg93, Lys94 and Arg76, Lys78) reside in the turn or loop
regions, outside or at the edge of the putative heparin-
binding site (Figure 6). Their positions are consistent with
the small effects on heparin-binding upon alanine substi-
tution of these residues. The critical residues involved in
heparin-binding are possibly Arg73, Lys60, and Lys62.
Other adjacent basic residues, including the highly posi-
tively charged N-terminal region and two other positive
charge clusters (Lys52, Lys58 and Lys63, Lys91, Arg93,
Lys94), may contribute additively to binding, depending
on the length and composition of the heparin or heparin-
like molecules. These findings are consistent with the
larger size of the heparin-derived oligosaccharide required
for high-affinity binding to HGF (12–14 residues) versus
bFGF (5 residues) [28]. It is not clear, however, if some of
these basic residue clusters are excluded from interactions
with heparin by the kringle domain(s) in full-length HGF
or in a multidomain fragment. Nevertheless, there does
not appear to be extensive contacts between the N and K1
domains, and the high surface potential area is located on
a different side of the N domain structure from the C ter-
minus, making it unlikely to be occluded by K1. NMR-
monitored titration experiments may help to further
delineate the heparin-binding site(s).

The overall topology of the N domain is unusual among
known protein structures, and is characterized by the two
extended loops joining the opposite ends of the central β
sheet. A search of the protein data bank (PDB) using the
program DALI [29] failed to find a similar folding pattern
among known protein structures. It is interesting to note
that alanine substitutions of several residues at or near the
turn regions joining the extended loops and the central β
sheet caused a significant reduction in the mitogenic
and/or receptor-binding abilities of the HGF variant NK1
(Figure 6a) [16]. These results suggest that the loop regions
may have important roles in receptor binding and/or stabi-
lization of the fold. 

Biological implications
Hepatocyte growth factor (HGF) is a potent mitogen,
motogen, and morphogen, which targets a wide range of
tissues and organs, and is also implicated in tumorigene-
sis. HGF exerts its effects through a receptor tyrosine
kinase, but also binds heparin which profoundly effects
its biological activities. HGF is one of the few known
plasminogen-related growth factors, each having an

N-terminal (N) domain with a hairpin-loop sequence.
While this domain becomes truncated when plasmino-
gen is converted to its active form, it is retained in
mature HGF and is essential for the HGF–receptor and
HGF–heparin interactions.

The HGF N domain structure reported here, represents
the first structure of this domain from any plasminogen-
related protein. The structure reveals a distinct pattern
of positive charge distribution, and an unusual folding
topology which may be unique to this class of proteins.
The hairpin-loop region, folded in a well defined α–loop–
β–loop–β motif, not only plays an important role in stabi-
lizing the structure, but also contributes several basic
residues to a putative heparin-binding site. In light of
the N domain structure, and prior reports that basic
residues outside or at the edge of this site have little
effect on heparin binding, we propose that three basic
residues together with several polar residues may play
critical roles in heparin binding.

The high intrinsic stability of the N domain structure,
when expressed without the adjoining domains of
HGF, suggests that it, like the kringle and serine pro-
tease domains, may have been incorporated into the
relatively complex HGF domain structure by genetic
recombination events involving a gene(s) encoding a
simpler ancestral protein. The extent to which this
structure is distributed among existing proteins, and
whether it occurs independently of other structural
domains, will help elucidate the origins of this unique
class of signaling molecules.

Materials and methods
NMR sample preparation 
Both 15N- and 15N/13C-labeled forms of the N domain of HGF were
produced in Escherichia coli and purified as described previously [21]
except that M9 minimal media, containing either 15NH4Cl or both
15NH4Cl and13C-labeled glucose, was used during the protein expres-
sion. The final NMR sample conditions were: 50 mM NaPO4, 100 mM
NaCl, 0.02% sodium azide, pH 6.8, at a concentration of ~2 mM, in
either 8% D2O/92% H2O or 100% D2O.

Data collection and analysis 
All NMR data were collected on a Varian UnityPlus 600 MHz spectro-
meter at 30°C using Z-spec triple resonance probes with pulsed field
gradients (Nalorac Corp., Martinez, CA). Sequential connectivities of
the NH spin systems were established in three-dimensional (3D)
HNCACB and CBCACONNH experiments [30]. Residue type identifi-
cation and sidechain 1H/13C resonance assignments were made using
3D HCCONH and CCONH experiments [31]. Two-dimensional (2D)
HBCBCGCDHD and HBCBCGCDCEHE experiments [32], along
with observed intraresidue NOEs, were used to assign aromatic ring
proton and carbon resonances. Distance restraints were determined
from 3D 15N-edited NOESY [33], four-dimensional (4D) 15N/13C-
edited NOESY [34], and 4D 13C/13C-edited NOESY [35] with a mixing
time of 150 ms. Coupling constants between NH protons and CαH
protons (3JHNHα) were measured as described [36]. Four high-resolu-
tion, 2D 1H-1H NOESY [37] and 1H-1H correlation spectroscopy
(COSY) [38] spectra collected from samples in H2O or D2O were
used to aid resonance assignments. 
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Structure calculations 
Structure calculations were performed using the program X-PLOR
[39] and the distance-geometry simulated-annealing (SA) methods
[40]. The NOEs were classified according to their integrated volume
in three distance ranges: strong, 1.8–3.0 Å; medium: 1.8–3.8 Å and
weak, 1.8–5.0 Å. The locations of the two disulfide bonds were con-
firmed by initial calculations using only NOE restraints; subsequent calcu-
lations included specific disulfide bond restraints. Dihedral angle and
hydrogen-bond restraints were applied at the final stage of refinement.
The dihedral angles φ were estimated from 3JHNHα and were used to
restrain the helix or strand regions as –60 ± 40° for 3JHNHα < 6 Hz and
–120 ± 40° for 3JHNHα > 8 Hz [23]. Hydrogen-bond restraints were
included based on cross-strand NOE patterns for the sheet region or for
those slowly exchanging amides in a helix or strand identified in a 1H-15N
correlation spectrum following solvent exchange with D2O. Each hydro-
gen bond was applied with two distance restraints, one between the
hydrogen and acceptor atom of 1.5–2.3 Å and one between the donor
heavy atom and the acceptor atom of 2.4–3.3 Å. Twenty low-energy
NMR structures were selected and final structures were obtained by
2500 steps of Powell minimization. The energy terms included in the cal-
culation and their final force constant values are: bonds, 1000 kcal
mol–1 Å–2; van der Waals repel force, 4 kcal mol–1 Å–4, with a repel radii
of 0.75 of those in the X-PLOR parameter set; angles, 500 kcal mol–1

rad–2; improper angles as defined in the X-PLOR 3.8 parameter file (par-
allhdg.pro); dihedral, 200 kcal mol–1 rad–2; and NOE, 50 kcal mol–1 Å–2.

Accession numbers
The coordinates have been deposited in the Brookhaven protein data
bank with accession code 2hgf.
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