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Conformational ensembles of RNA oligonucleotides
from integrating NMR and molecular simulations
Sandro Bottaro,1* Giovanni Bussi,2 Scott D. Kennedy,3 Douglas H. Turner,4 Kresten Lindorff-Larsen1*

RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship
between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flex-
ible molecules, and understanding their internal dynamics is particularly challenging using experimental data
alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining
atomisticmolecular dynamics simulationswith nuclearmagnetic resonance spectroscopy data. The goal is achieved
by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of
current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We deter-
mine the populations of different conformational states by considering several nuclearmagnetic resonance param-
eters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our
approach is applied on a set of model systems, it is fully general and may be used to study the conformational
dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.
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INTRODUCTION
Many biomolecules are highly dynamic systems that undergo sig-
nificant conformational rearrangements during their function. Ex-
perimental techniques such as nuclear magnetic resonance (NMR)
spectroscopy, fluorescence spectroscopy, and small-angle x-ray scat-
tering are well suited to probe the dynamics of molecules in solution.
However, obtaining a full description of structure and dynamics of
biomolecules using experiments alone can be highly nontrivial be-
cause the measured quantities are generally time and ensemble
averages over conformationally heterogeneous states.

In this perspective,maximumentropy (1–3) (MaxEnt) andBayesian
(4–6) approaches have emerged as powerful theoretical tools for inte-
grating simulations with experiments. These approaches typically
generate a structural ensemble for the system of interest using molec-
ular dynamics (MD) orMonte Carlo simulations. This ensemble, how-
ever, may not necessarily agree with available experimental data
because of limited sampling or inaccuracies in the usedmodel describ-
ing the physics and chemistry of the system (that is, the force field). The
underlying idea behind MaxEnt is to minimally perturb a simulation
ensemble tomatch the experimental data. Random and systematic er-
rors can be taken explicitly into account. These approaches have been
successfully used to study protein systems (6), whereas applications to
nucleic acids have been so far limited (7, 8).

Here, we consider the conformational ensembles of four RNAtetra-
nucleotides by integrating available NMR data (9–11) with extensive
atomistic MD simulations. Despite the lack of a biological relevance,
RNA tetranucleotides serve as challenging model systems both from
the experimental and computational point of view. First, they display
significant dynamics: Therefore, one single structure cannot be repre-
sentative of the entire ensemble. The conformational heterogeneity
makes it nontrivial to provide a structural interpretation of average
measurements using standard three-dimensional structure determina-
tion tools. Second, current state-of-the-art MD force fields fail in pre-
dicting the properties of these tetranucleotides (12). Several studies
(11, 13) have shownMD simulations to overstabilize so-called inter-
calated conformations (see Fig. 1) that, in some cases, correspond to
the predicted free-energy minimum. From the experimental point of
view, the presence and the population of intercalated conformations
are expected to be low but cannot be accurately quantified.

Here, we show that, even with the aforementioned complications,
it is possible to obtain an accurate thermodynamic description for
a system of interest by combining experiments and simulations.
We report extensive atomistic MD simulations in explicit water for
r(AAAA), r(CCCC), r(GACC), and r(UUUU) tetranucleotides. We
show substantial disagreement between predicted and experimental
NMR data, even when using recent force-field parameters.We there-
fore use the MaxEnt/Bayesian approach to refine the simulated en-
sembles to match a set of available NMR experimental data, including
nuclear Overhauser effect (NOE) intensities and scalar couplings.

Analysis of the optimal ensembles shows that r(CCCC) and r(GACC)
are ≈ 60% in A-form–like conformations. r(AAAA) and r(UUUU)
display a higher complexity because the optimal ensembles consist of
a mixture of A-form with other conformationally heterogeneous
structures.
RESULTS
Agreement between experiments and simulations
We first consider the tetranucleotide with sequence CCCC. Previous
NOEmeasurements for r(CCCC)were found to be consistentwith a con-
formational ensemblemostly composed ofA-form–like structures, with
a minor population (13%) of conformations with cytosine at position 4
(C4) inverted (see Fig. 1A) (10). Extensive MD simulations with the
standard Assisted Model Building with Energy Refinement (AMBER)
force field (cOL3 described inMaterials andMethods) showed the pres-
ence of highly populated intercalated structures in which C1 is inter-
posed between C3 and C4 (11, 13), whereas C2 is either stacked on C3
or solvent-exposed. The lack of A-form–like structures is confirmed in
our cOL3 simulations, as shown in the eRMSD histogram from an ideal
A-form in Fig. 1B (yellow line). Tomeasure distances between three-
dimensional structures, we here use the eRMSD, an RNA-specific
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metric distance based on the relative orientation and position of nucleo-
bases (14). It has recently been reported (15) that corrections to oxygen
van der Waals radii (16) in conjunction with the optimal 3-charge,
4 point (OPC) water model (17) (hereafter referred to as VdW-OPC)
significantly disfavor the presence of intercalated structures in r(GACC)
and r(CCCC) tetranucleotides, thereby stabilizing A-form–like confor-
mations. When using the VdW-OPC force field (Fig. 1B, blue line), we
observe a small, yet significant population of A-form–like structures
(eRMSD < 0.75) and C4-inverted conformations (0.75 to 1.0 eRMSD
from A-form).

The higher accuracy of VdW-OPC with respect to cOL3 is further
confirmed by the improved agreement between calculated and exper-
imental data. Figure 1C reports the c2 for backbone 3J scalar couplings
Bottaro et al., Sci. Adv. 2018;4 : eaar8521 18 May 2018
(H3-P, H5′/H5″-P, and H4-H5′/H5″), sugar 3J couplings (H1′-H2′,
H2′-H3′, and H3′-H4′), and NOE intensities (10, 11). In addition,
we consider the absence of specific peaks in NOE spectroscopy
(NOESY) data as a source of information. On the basis of assigned
chemical shifts, NMR spectra were inspected for the presence of NOE
cross peaks between every pair of nonexchangeable protons in the tet-
ramers. To assign unobserved NOEs (uNOEs), we estimated the max-
imum NMR observable distance for each potential NOE from the
minimum detectable cross-peak volume (see Materials and Methods).
Whenever simulations predict a shorter distance between these pro-
ton pairs, it is considered a violation of a uNOE. Note that the im-
portance of uNOE has been discussed for protein systems as well
(18). uNOEs are of particular importance because several violations
are present in intercalated structures (11). It can be clearly seen in
Fig. 1C that the VdW-OPC force field provides a better agreement
with experimental data, especially for NOEs. We note, however, the
higher c2 for 3J sugar scalar couplings with respect to the standard
cOL3 force field.

Reweighting procedure
It is evident from Fig. 1C that the conformational ensemble predicted
by simulations alone is not in complete agreement with experiments.
We therefore generate a conformational ensemble that satisfies the ex-
perimental constraints using the MaxEnt/Bayesian approach with the
inclusion of error treatment (5, 7). In MaxEnt approaches, one seeks
the minimal perturbation of the simulated ensemble (that is, the prior
distribution) that satisfies a set of known experimental averages. This
can be achieved (2, 7) by minimizing the function

G ¼ logðZðlÞÞ þ∑
m

i
liF

EXP
i þ 1

2
∑
m

i
l2i s

2
i ð1Þ

with respect to the set of Lagrange multipliers l = l1 … lm. Here, the
index i runs over the m experimental averages FEXP

i with associated
normally distributed and uncorrelated errors si. Z is the partition
function ZðlÞ ¼ ∑Nj w

0
j exp½�∑mi liFiðxjÞ�, where Fi(xj) is the function

used to back-calculate the experimental observable from the atomic
coordinates x, and fw0

1…w0
Ng corresponds to the weights of the N

frames in the prior distribution. Note that this approach is com-
pletely equivalent to a Bayesian ensemble refinement approach (5, 19)
in which one seeks the optimal weights {w1 … wN} minimizing the
negative log posterior L

Lðw1…wNÞ ¼ m
2
c2 þ qSREL ð2Þ

where c2 ¼ ∑m
i ð∑N

j wjFiðxjÞ � FEXP
i Þ2=ms2i is the deviation from the

experimental averages, and the relative entropy SREL ¼ ∑N
j wjlogðwj=w0

j Þ
quantifies the deviation from the prior distribution. q sets the relative
weight between these two quantities and needs to be chosen by consid-
ering how c2 and SREL vary for different values of this parameter (5), as
described below.

A few items are worth highlighting. First, the number of experi-
mental constraints, m, is typically much smaller compared to the
number of samples,N, and it is therefore in practice easier tominimize
the function in Eq. 1 rather than Eq. 2. Second, q enters the MaxEnt
formulation (Eq. 1) as a global scaling factor of all Gaussian errors si.
Third, heterogeneous data (NOE, 3J couplings, chemical shifts, etc.)
Fig. 1. Conformational ensemble of r(CCCC) simulations and agreement with
experimental data. (A) Three-dimensional structures of r(CCCC) discussed in the
main text. (B) eRMSD from the A-form histogram for cOL3 and VdW-OPC simula-
tions. Solid lines indicate the average calculated using a blocking procedure,
whereas the area between minimum and maximum is shown in shade. The histo-
gram displays three peaks corresponding to different conformations: A-form–like
(eRMSD < 0.75), C4-inverted (0.75 < eRMSD < 1), and intercalated/C2 unstacked
(eRMSD > 1.0). Thresholds are shown as dashed lines. (C) Agreement between sim-
ulations and experiments quantified using the c2 statistic for backbone scalar cou-
plings (3J bb), sugar scalar couplings, NOE, and uNOE. Error bars in black show the
SEM. The value of c2 relative to NOE with cOL3 is out of scale; the corresponding
value with error is therefore reported in the figure.
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can be used simultaneously in the reweighting procedure, both
averages and inequality constraints (7).

Choosing the data and the confidence parameter
Before proceeding to the analysis of the optimized ensemble, we
study the dependence of the results on (i) the type of experimental
data used for reweighting and (ii) the tunable parameter q. Given the
better initial agreement with experimental data, we here consider the
VdW-OPC simulations. Figure 2A (solid lines) shows c2 as a func-
tion of q when using scalar couplings as the only input for reweight-
ing. As expected, small q corresponds to a better fit, whereas in the
limit of large q we approach the original, unreweighted c2 value
(dotted-dashed line). We can alsomonitor the behavior of c2 relative
to data that were not used in the reweighting (Fig. 2A, dashed line).
In the limit of q → 0, the violations of uNOE become very small.
Conversely, the agreement with NOE distances has a clear minimum
around q = 3. When using only NOEs for reweighting (Fig. 2B), we
observe improved agreement with respect to all other experimental
sources of data. This effect is more pronounced when using uNOE
only (Fig. 2C), demonstrating the importance and the validity of this
type of data. Note that, at least for r(CCCC), the reweighted c2 values
are always smaller compared to the original, unreweighted values,
Bottaro et al., Sci. Adv. 2018;4 : eaar8521 18 May 2018
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indicating that the different types of data are consistent. Given the
cooperative effect of the different types of data, we finally consider
the case in which 3J couplings, NOE, and uNOE are all used at the
same time for reweighting (Fig. 2D). This combination provides the
best accord both for r(CCCC) and for the other tetranucleotides
(figs. S1 to S3).

When considering c2 alone, one would choose a small q so as to
attain the best fit. In the limit q → 0, however, the original ensemble
can be substantially distorted to the point that the physicochemical
information contained in the force field is lost (Eq. 2). In addition, this
has a detrimental effect on the statistical errors because the number of
effective frames contributing to the ensemble decreases significantly (fig.
S4). To strike a good balance between fit and proximity to the prior
distribution, we scan different values of q until a further decrease of this
parameter leads to an increase in the relative entropy without substan-
tially improving the fit (5). Although this procedure does not provide a
unique q, it makes it possible to identify a range of reasonable values
(fig. S4). We here use a pragmatic approach and set q = 2, the largest
value for which c2 < 2 for all tetranucleotides and all types of experi-
mental data. Note that the relative weight of different experiments
might bemodulated by changing the corresponding values of s. Scatter
plots comparing individual experimental averages against simulations
before/after reweighting are shown in figs. S5 to S8.

Conformational ensemble of r(CCCC)
The set of optimized weights can be now used to calculate the full
probability distribution of any observable (for example, distances,
torsion angles, etc.). To appreciate the properties of the optimized
ensemble, it is again interesting to consider the distribution of the
distance from A-form (Fig. 3A).

The original VdW-OPCMD ensemble consists of≈18% A-form
structures (eRMSD fromA-form<0.75) and 9%withC4 either inverted
or unstacked (eRMSD fromA-form in the 0.75 to 1.0 range). From the
histogram of eRMSD relative to intercalated structure (Fig. 3B), the ini-
tial ensemble estimates a 53% population of intercalated structures that
can be subdivided into fully stacked intercalation (13%, eRMSD < 0.4)
and intercalated structures with C2 unstacked (≈ 40%, eRMSD in the
0.4 to 0.8 range).

Upon reweighting, A-form represents the major conformation
(54%) followed by C4 inverted (22%). The population of intercalated
structures is significantly reduced in the reweighted ensemble to
≈7% (Fig. 3B). This result is not surprising because it is consistent
with the picture proposed in the original experimental paper (10).
The ensemble obtained here, however, did not require expert inter-
pretation of the individual NOE distances. The reweighting approach
takes into account general properties encoded in the force field and
makes it possible to monitor degrees of freedom that were not
measured by NMR. Two significant examples are reported in Fig. 3
(C and D). Figure 3C shows the distribution of the distance between
the atomOP2 in C3 and the hydrogen at the 5′ terminus in C1 (H5T),
where we observe the presence of a stable hydrogen bond between
these two atoms (associated with the intercalated conformation) that
is almost absent after reweighting. The reweighting also markedly
affects the distribution of the a angle in C2, because we find that
gauche− (g−) is the preferred rotameric state in the reweighted ensem-
ble (Fig. 3D). A similar behavior is observed for a in C3 and z in C2
and in C3, in accordance with previous simulation studies that have
shown the importance of these two torsion angles in tetranucleotides
and tetraloop simulations (20, 21). We highlight that the backbone
Fig. 2. Agreement between reweighted r(CCCC) simulations and experiments
using different data for reweighting (solid lines) and for validation (dashed
lines). (A) c2 as a function of q when using the two sets of 3J scalar couplings for
reweighting and cross-validated against NOE and uNOE. Results using NOE
distances and uNOE distances for reweighting are shown in (B) and (C), respective-
ly. (D) Results using all three types of data for reweighting. Initial, unreweighted c2

are shown as dotted-dashed lines. Values of c2 below 1 correspond to an average
difference between prediction and experiment within the error s.
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3J scalar couplings used in the reweighting procedure report on D and
g angles, but not on a/z.

Conformational ensemble of r(AAAA), r(GACC), and r(UUUU)
The sameprocedure described abovewas applied to r(AAAA), r(GACC),
and r(UUUU) tetranucleotides. In all cases, VdW-OPC is considerably
better compared with the cOL3 force field (Fig. 4, left panels). The re-
weighting procedure further improves agreement with experimental
data. However, we do observe a residual discrepancy in some cases
(c2 > 1) that stems from predicted NOE distances falling outside the
experimental range (figs. S5 to S8). In the case of r(GACC), three
NOEs reported in the original experimental work (11) were not
satisfied in a preliminary reweighting. After careful checking of the
experimental data, we discovered two previously undetected spectral
overlaps. The corresponding NOEs were thus removed from the list of
data points. Evidently, the reweighting procedure can be used to
highlight data points that are inconsistent with the others and hence
might require manual inspection. These cases can be treated by using
error models suitable to describe outliers (7, 22).
Bottaro et al., Sci. Adv. 2018;4 : eaar8521 18 May 2018
The r(AAAA) ensemble is composed of ≈30% A-form–like
structures and 16% A4-inverted/unstacked (Fig. 4, middle panels).
In this case, the available experimental data could not completely
rule out the presence of intercalated structures, which represent
the 13% of the optimized ensemble (Fig. 4, right panels). The re-
maining 40% is composed of other structures that exhibit one or
more sugar puckers in C2′-endo and/or the A1-c angle in syn con-
formation (Table 1 and fig. S9).

r(GACC) behaves very similarly to r(CCCC), with≈ 60%A-form–
like structures and 20% C4-inverted/unstacked. The similarity be-
tween r(GACC) and r(CCCC) can also be appreciated by considering
the sugar pucker and c angle preferences reported in Table 1 and
figs. S10 and S11. Intercalation is almost completely absent in the re-
weighted ensembles.

Among all the systems studied here, r(UUUU) has the lowest
population of A-form–like structures (9%). The rest of the ensemble
is composed of a variety of diverse structures that cannot be easily
clustered. This can be seen from the low percentage of sugar pucker
in C3′-endo conformation (Table 1 and fig. S12) and from the rela-
tively flat distribution of eRMSD from A-form in Fig. 4. Among this
set of diverse conformations, a very small fraction of intercalated
structures are present.

Note that the percentages reported here depend on two important
choices: on the reference structures and on the choice of q. Whereas
the geometry of the ideal A-form can be unambiguously defined (23),
the intercalated structures are obtained by performing a cluster anal-
ysis of the cOL3 simulation as described previously (24). Although this
choice has a degree of arbitrariness, we found it as a useful and intu-
itive manner to define an order parameter complementary to the dis-
tance from A-form. As for q, we verified that the population of the
different states do not depend critically on this parameter in the rele-
vant range 2 < q < 5 (fig. S13).
DISCUSSION
Here, we have described the structural ensembles of four RNA tetra-
nucleotides at the atomistic level. The characterization of these systems
represents a first step in understanding the ensembles and internal dy-
namics of larger oligonucleotides and other RNA molecules under-
going significant conformational changes. Despite their apparent
simplicity, tetranucleotides are particularly challenging systems: Be-
cause of their conformational heterogeneity, NMR experimental data
need to be interpreted as ensemble averages. For this reason, standard
procedures for NMR structure determination cannot be easily applied
(25). In addition, it is not possible to predict the properties of these
systems using simulations alone, because of known force-field inac-
curacies (Fig. 1). Only the combination of experiment with compu-
tation makes it possible to provide an atomic-detailed description of
their conformational ensembles. In this context, theMaxEnt/Bayesian
approach serves as a fundamental theoretical ingredient for using the
two techniques in conjunction.

We find that r(CCCC) and r(GACC) are ≈ 60% in A-form–like
conformations and ≈ 20% with the 3′ terminal base either unstacked
or inverted (Fig. 1A). r(AAAA) tetranucleotide is characterized by a
lower A-form content (≈ 30%) and displays a larger variability in
terms of sugar conformations. Our analysis shows that the presence
of intercalated structures cannot be excluded in this case. Among the
four systems considered here, r(UUUU) displays the highest disorder
(Table 2), with a percentage of A-form conformation of ≈10%.
Fig. 3. Distribution of different observables before and after reweighting
r(CCCC) simulations using VdW-OPC. Solid lines indicate the average calculated
using a blocking procedure; minima and maxima are shown in shade. (A) eRMSD
from ideal A-form, (B) eRMSD from an intercalated conformation, (C) distance
distribution between OP2 in C3 and H5T in C1, and (D) the a torsion angle of
C2. Peaks in (A) and (B) can be associated to the structures shown in Fig. 1: A-form
(eRMSD from A-form below 0.75), C4-inverted (eRMSD from A-form 0.75 to 1.0),
intercalated (eRMSD from intercalated <0.4), and intercalated with C2 unstacked
(eRMSD from intercalated 0.4 to 0.8). eRMSD boundaries are shown as dashed lines.
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From a technical perspective, the combination of experiments and
simulations can be seen as a regularization problem in which a small
set of experimental data is used to gain insights into a highly dimen-
sional, complex set of molecular conformations. The problem is un-
Bottaro et al., Sci. Adv. 2018;4 : eaar8521 18 May 2018
derdetermined and has to be regularized by using a suitable prior
distribution, here provided by MD simulations. This interpretation
becomes transparent in the Bayesian ensemble refinement formula-
tion in Eq. 2 (5, 19). The balance between fit quality (c2) and deviation
from the prior distribution (SREL) is tuned by a system-dependent,
global confidence parameter q, that is not known a priori.

In a number of recentMaxEnt-inspired approaches, a bias deriving
from the experimental data is estimated on the fly during the simula-
tions (5, 7, 22, 26). These approaches have the advantage of enhancing
the sampling in relevant regions of the conformational space. On the
other hand, the reweighting procedure can be applied a posteriori to
Fig. 4. Comparison between reweighted and unreweighted ensembles for r(AAAA), r(GACC), and r(UUUU) tetranucleotides. (Left) Agreements between calculated
and experimental averages for cOL3, VdW-OPC, and reweighted VdW-OPC simulations. (Middle) Histograms of eRMSD from ideal A-form. (Right) Histograms of eRMSD from
intercalated structure. The dashed lines indicate the thresholds used for calculating the percentage of A-form–like (middle) or intercalated structures (right) upon reweighing.
Table 1. Percentage of C3′-endo (d < 115°) and anti (c > 120°) of
reweighted VdW-OPC simulations. The statistical error calculated using
block averaging is below 1%.
Sequence
 N1
 N2
 N3
 N4
% C3′-endo
 AAAA
 70.6
 75.1
 84.5
 66.3
CCCC
 90.7
 88.9
 88.5
 71.7
GACC
 86.9
 87.1
 88.3
 71.1
UUUU
 61.4
 49.5
 50.5
 63.2
% Anti
 AAAA
 65.2
 96.5
 98.4
 97.8
CCCC
 98.0
 98.5
 99.8
 99.7
GACC
 89.2
 99.9
 98.9
 99.4
UUUU
 88.5
 97.1
 96.8
 96.3
Table 2. Number of experimental averages.
NOE
 3J sugar
 3J backbone
 uNOE
AAAA
 36
 11
 17
 243
CCCC
 27
 11
 15
 245
GACC
 20
 12
 17
 284
UUUU
 9
 10
 15
 282
5 of 8

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

h
D

ow
nloaded from

 

existing simulations whenever new experimental data are available
(27). Because reweighting only requires a cheap post-processing of
existing trajectories, it is straightforward to perform multiple cross-
validation tests. In addition, reweighting is very convenient when
the forward model calculation is particularly demanding, because in
biasedmethods the back calculation of averages from structures has to
be performed at least every few time steps (28).

Here, we have found that combining experimental data with simu-
lations had mutual beneficial effects. On the one hand, simulations
helped identifying spurious experimental data points. On the other
hand, we have used experimental data to identify inaccuracies in
MD force fields. Modern atomistic force fields consist of hundreds of
parameters, and even finding the relevant interactions that can poten-
tially improve their accuracy is a time-consuming and nontrivial task.
Our approach substantially simplifies this search (Fig. 3, C and D), be-
cause the probability distribution over any degree of freedom before
and after reweighting can be readily compared. We find that hydrogen
bonds to nonbridging oxygens are significantly destabilized upon re-
weighting, in accordance with previous simulation studies (11, 29). At
the same time, the population ofa and g torsion angles is, in some cases,
shifted from gauche+ to gauche−. As molecular mechanics force fields
improve, the approach described here should require less experimental
data to provide reliable determination of structural ensembles (30, 31).
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MD simulations
We performed MD simulations on r(AAAA), r(CCCC), r(UUUU),
and r(GACC) tetranucleotides. Each system was simulated with two
different force fields: (i) the AMBER 99 force field (32) with parmbsc0
corrections to a/g (33) and the cOL corrections to c torsion angles
(34) in TIP3P water.We refer to this combination as cOL3 . These sim-
ulations were taken from our previous studies (20, 35). (ii) cOL3 with
corrections to van der Waals oxygen radii (16) (atom types O2, OH,
and OS) and using the OPC water model (17). We refer to this com-
bination as VdW-OPC. Parameters are available at http://github.com/
srnas/ff. MD simulations were performed using the GROningen
MAchine for Chemical Simulations (GROMACS) 4.6.7 software
package (36). Ideal A-form, fully stacked initial conformations were
generated using the Make-NA web server. The oligonucleotides were
solvated in a truncated dodecahedric box and neutralized by adding
Na+ counterions (37). Initial conformations wereminimized in vacuum
first, followed by a minimization in water and equilibration in NPT en-
semble at 300 K and 1 bar for 1 ns. Production runs were performed in
the canonical ensemble using a stochastic velocity rescaling thermostat
(38). All bonds were constrained with the Linear Constraint Solver
algorithm, and equations of motion were integrated with a time step
of 2 fs. Tetranucleotides were simulated using temperature replica ex-
change (39) using 24 replicas in the temperature range of 278 to 400 K
for 1.0 ms per replica. All the analyses presented here were performed
for the 300K replica and using 20,000 frames. Averages and SEMswere
calculated using four blocks of 5000 samples each. Sampling was suffi-
cient to achieve similar eRMSD distributions for each block (fig. S14)
and to obtain populations of different substates in agreement withmul-
tidimensional replica exchange MD simulations (12, 13, 15).

NMR data
Experimental NOE and scalar couplings have previously been pub-
lished (10, 11). We used Gaussian-distributed experimental errors of
Bottaro et al., Sci. Adv. 2018;4 : eaar8521 18 May 2018
1.5 Hz for scalar couplings and of 0.1 Å for uNOE. The error for
NOE was estimated as minðrEXPmax � rEXP; rEXP � rEXPmin Þ. The number
of experimental averages for each NMR parameter and for each tetra-
nucleotide sequence is reported in Table 2. The complete list of exper-
imental data is available in the Supplementary Materials. NOE
intensities from simulations are calculated as averages over the N
samples NOECALC ¼ ð∑Ni wir�6

i Þ. 3J scalar couplings were calculated
using the Karplus relationships described in fig. S15 and table S1 using
the software baRNAbahttps://github.com/srnas/barnaba. Note that in
some cases, the error introduced by the forward model is significant.
As an example, 3J scalar couplings calculated using Karplus relation-
ships can introduce errors up to 2 Hz (fig. S16). Care should also be
takenwhen calculating NOE intensities fromproton-proton distances
because the simple r−6 averaging does not take spin diffusion into ac-
count, and it is only valid in the limit of slow internal motion com-
pared to the tumbling time (40).

Unobserved NOE
NMR spectra were inspected for the presence of NOESY cross peaks
between every pair of protons in the tetramer. If no cross peak was
observed, then the potential contact was classified as a uNOE. If the
spectral position of a potential cross peak did not overlap any other
observed cross peak, then theminimumdetectable cross-peak volume
was assumed to be two times the SD of spectral noise (Verr). Scalar
coupling results in NOE cross peaks that are split into multiplets of
two, four, or more peaks, resulting in accordingly reduced peak
heights and increased minimum detectable volume. For a cross peak
consisting ofMmultiplets, theminimumdetectable volume is 2MVerr.
Verr and a scaling factor, c, obtained in the original work (10, 11) from
NOESY spectra with a 200-ms mixing time, are used to associate a
distance, R, with the minimum detectable volume: R = (c/2MVerr)

1/6.
The analysis of uNOEs was carried out here with 800-ms NOESY
spectra, where cross peaks are typically 2.5- to 3-fold greater than at
200 ms, so the minimum detectable NOE volume was reduced by a
factor of 2.5 (after correcting for any difference in the number of
NMR scans). If the spectral position of a potential cross peak partially
overlapped one or more observed cross peaks, then the minimum de-
tectable volume of the potential cross peak was determined by the
magnitude of the observed cross peak and exact details of the overlap
(instead of spectral noise). Typically, if the partially overlapped ob-
served cross peak was medium or weak, respectively, then a potential
cross peak exhibiting no apparent intensity was classified as un-
observed with a volume that corresponded to an internuclear distance
of greater than 3.3 or 4.0 A. If the overlapping observed cross peak was
strong or the potential cross peak was close to the diagonal, then the
potential cross peak was not classified as unobserved.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaar8521/DC1
fig. S1. Agreement between r(AAAA) simulations using VdW-OPC and experiments as
a function of the parameter q.
fig. S2. Agreement between r(GACC) simulations using VdW-OPC and experiments as a
function of the parameter q.
fig. S3. Agreement between r(UUUU) simulations using VdW-OPC and experiments as a
function of the parameter q.
fig. S4. c2 versus relative entropy and fraction of effective frames as function of q.
fig. S5. Reweighted r(AAAA) simulations using VdW-OPC.
fig. S6. Reweighted r(CCCC) simulations using VdW-OPC.
fig. S7. Reweighted r(GACC) simulations using VdW-OPC.
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fig. S8. Reweighted r(UUUU) simulations using VdW-OPC.
fig. S9. Torsion angle distribution before (blue) and after (gray) reweighting r(AAAA) simulations
with q = 2.
fig. S10. Torsion angle distribution before (blue) and after (gray) reweighting r(CCCC) simulations
with q = 2.
fig. S11. Torsion angle distribution before (blue) and after (gray) reweighting r(GACC) simulations
with q = 2.
fig. S12. Torsion angle distribution before (blue) and after (gray) reweighting r(UUUU) simulations
with q = 2.
fig. S13. Population of A-form–like and intercalated structures as a function of q.
fig. S14. Histogram of eRMSD from A-form and intercalated in four simulation blocks of 5000
samples each, corresponding to 0.25 ms per block.
fig. S15. Karplus equations listed in table S1 (vide infra) overlayed on experimental data from
previous studies (41–44).
fig. S16. Root mean square error between calculated and experimental 3J couplings.
table S1. Comparison between existing Karplus parameters for RNA.
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