59 research outputs found

    Equilibrium of Global Amphibian Species Distributions with Climate

    Get PDF
    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions

    Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    Get PDF
    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed

    Predicting Coral Species Richness: The Effect of Input Variables, Diversity and Scale

    Get PDF
    Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as anindicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated byspecies-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected

    A modified Delphi study of screening for fetal alcohol spectrum disorders in Australia

    Get PDF
    Background: There is little reliable information on the prevalence of fetal alcohol spectrum disorders (FASD) in Australia and no coordinated national approach to facilitate case detection. The aim of this study was to identify health professionals’ perceptions about screening for FASD in Australia. Method: A modified Delphi process was used to assess perceptions of the need for, and the process of, screening for FASD in Australia. We recruited a panel of 130 Australian health professionals with experience or expertise in FASD screening or diagnosis. A systematic review of the literature was used to develop Likert statements on screening coverage, components and assessment methods which were administered using an online survey over two survey rounds. Results: Of the panel members surveyed, 95 (73%) responded to the questions on screening in the first survey round and, of these, 81 (85%) responded to the second round. Following two rounds there was consensus agreement on the need for targeted screening at birth (76%) and in childhood (84%). Participants did not reach consensus agreement on the need for universal screening at birth (55%) or in childhood (40%). Support for targeted screening was linked to perceived constraints on service provision and the need to examine the performance, costs and benefits of screening. For targeted screening of high risk groups, we found highest agreement for siblings of known cases of FASD (96%) and children of mothers attending alcohol treatment services (93%). Participants agreed that screening for FASD primarily requires assessment of prenatal alcohol exposure at birth (86%) and in childhood (88%), and that a checklist is needed to identify the components of screening and criteria for referral at birth (84%) and in childhood (90%). Conclusions: There is an agreed need for targeted but not universal screening for FASD in Australia, and sufficient consensus among health professionals to warrant development and evaluation of standardised methods for targeted screening and referral in the Australian context. Participants emphasised the need for locally-appropriate, evidence-based approaches to facilitate case detection, and the importance of ensuring that screening and referral programs are supported by adequate diagnostic and management capacity

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd

    Design of the Study

    No full text

    Diversity in current ecological thinking: Implications for environmental management

    Get PDF
    Current ecological thinking emphasizes that systems are complex, dynamic, and unpredictable across space and time. What is the diversity in interpretation of these ideas among today's ecologists, and what does this mean for environmental management? This study used a Policy Delphi survey of ecologists to explore their perspectives on a number of current topics in ecology. The results showed general concurrence with nonequilibrium views. There was agreement that disturbance is a widespread, normal feature of ecosystems with historically contingent responses. The importance of recognizing multiple levels of organization and the role of functional diversity in environmental change were also widely acknowledged. Views differed regarding the predictability of successional development, whether "patchiness" is a useful concept, and the benefits of shifting the focus from species to ecosystem processes. Because of their centrality to environmental management, these different views warrant special attention from both managers and ecologists. Such divergence is particularly problematic given widespread concerns regarding the poor linkages between science (here, ecology) and environmental policy and management, which have been attributed to scientific uncertainty and a lack of consensus among scientists, both jeopardizing the transfer of science into management. Several suggestions to help managers deal with these differences are provided, especially the need to interpret broader theory in the context of place-based assessments. The uncertainty created by these differences requires a proactive approach to environmental management, including clearly identifying environmental objectives, careful experimental design, and effective monitoring
    corecore