5 research outputs found

    Comparação do processo de reparo ósseo em tíbias de ratas normais e osteopênicas Bone repair process in normal and osteopenic female rats' tibiae: a comparative study

    No full text
    O objetivo foi comparar a consolidação óssea em tíbias de ratas normais e osteopênicas. 49 ratas albinas fêmeas, linhagem Wistar, peso médio de 160 (&plusmn; 20g) e 100 dias foram distribuídas em 2 grupos: Ooforectomizado (OOF) e Pseudo-ooforectomizado (Grupo controle - SHAM). 30 dias após a ooforectomia e/ou cirurgia simulada, todas foram submetidas à produção de lesão óssea cortical. Foram sacrificadas na 2ª, 4ª, 6ª e 8ª semanas. Os osteoblastos foram contados. O peso aumentou progressivamente, porém as OOF apresentaram maior peso (p<0,05) quando comparadas as SHAM, à época da segunda cirurgia. 15 dias pós-lesão óssea, as OOF apresentaram maior número de osteoblastos (p<0,05) quando comparados as SHAM. 30 dias pós-lesão óssea houve diminuição no número de osteoblastos, porém os valores foram equivalentes entre os dois grupos OOF e SHAM. 45 dias pós-lesão, apesar da diminuição constante de osteoblastos, o grupo OOF permaneceu elevado quando comparado ao grupo controle (p<0,05). Aos 60 dias o grupo SHAM apresentou menos osteoblastos, sugerindo processo avançado de reparo ósseo. Os animais osteopênicos apresentaram resposta inicial acelerada à lesão óssea, possibilitando a equivalência entre os grupos 30 dias pós-lesão. Mas, após este período apresentaram retardo na mineralização do osteóide, sugerindo atraso tardio no processo de reparo ósseo.<br>The purpose was to compare tibial bone union in normal and osteopenic female rats. Forty-nine Wistar albino female rats weighing 160 g (&plusmn;20g) and 100 days were distributed into 2 groups: Oophorectomized (OOF) and Pseudo-oophorectomized (SHAM). Thirty days later, a cortical injury was produced in all the animals. They were sacrificed in the 2nd, 4th, 6th and 8th weeks. Osteoblasts count was performed. Progressive weight increase was observed, but the OOF group was shown to have gained more weight (p&pound;0.05) than the SHAM group, at the time of the second surgery. After 15 days post-injury, the animals in the OOF group presented a higher number of osteoblasts (p&pound;0.05) compared to the SHAM group. Thirty days after injury, the number of osteoblasts was reduced, but both groups showed similar amounts. Forty-five days after injury, despite a constant reduction, the number of osteoblasts in the OOF group remained high when compared to SHAM (p&pound;0.05) group. After 60 days, we found less osteoblasts in the SHAM group, suggesting an advanced bone repair process. The osteopenic animals showed an early accelerated response, which became equivalent between both groups 30 days after injury. However, after that period, they showed a delayed osteoid mineralization, suggesting delayed late bone repair process

    STIMULATE-ICP-Delphi (Symptoms, Trajectory, Inequalities and Management: Understanding Long-COVID to Address and Transform Existing Integrated Care Pathways Delphi): Study protocol

    No full text
    Introduction As mortality rates from COVID-19 disease fall, the high prevalence of long-term sequelae (Long COVID) is becoming increasingly widespread, challenging healthcare systems globally. Traditional pathways of care for Long Term Conditions (LTCs) have tended to be managed by disease-specific specialties, an approach that has been ineffective in delivering care for patients with multi-morbidity. The multi-system nature of Long COVID and its impact on physical and psychological health demands a more effective model of holistic, integrated care. The evolution of integrated care systems (ICSs) in the UK presents an important opportunity to explore areas of mutual benefit to LTC, multi-morbidity and Long COVID care. There may be benefits in comparing and contrasting ICPs for Long COVID with ICPs for other LTCs. Methods and analysis This study aims to evaluate health services requirements for ICPs for Long COVID and their applicability to other LTCs including multi-morbidity and the overlap with medically not yet explained symptoms (MNYES). The study will follow a Delphi design and involve an expert panel of stakeholders including people with lived experience, as well as clinicians with expertise in Long COVID and other LTCs. Study processes will include expert panel and moderator panel meetings, surveys, and interviews. The Delphi process is part of the overall STIMULATE-ICP programme, aimed at improving integrated care for people with Long COVID. Ethics and dissemination Ethical approval for this Delphi study has been obtained (Research Governance Board of the University of York) as have approvals for the other STIMULATE-ICP studies. Study outcomes are likely to inform policy for ICPs across LTCs. Results will be disseminated through scientific publication, conference presentation and communications with patients and stakeholders involved in care of other LTCs and Long COVID
    corecore