274 research outputs found

    The Anthropocene: an Australasian perspective and survey.

    Get PDF
    In 2000, Crutzen and Stoermer suggested that the Holocene (the geological period of time since 11,700 years ago: Walker et al., 2009) had finished and that humanity had now entered the “Anthropocene”. As summarised by Steffen et al. (2011) and Wolfe et al. (2013), these scientists were referring to the Anthropocene as the interval of demonstrable human alteration of global biogeochemical cycles, beginning subtly in the late 18th Century following James Watt’s invention of the coal-fired steam engine, and accelerating markedly in the mid-20th Century (called “The Great Acceleration”)

    Geochemically tracing the intermediate and surface waters in the Tasman Sea, southwest Pacific

    No full text
    The relatively understudied intermediate waters of the world have been implicated as an important part of the global ocean circulation. This thesis discusses the intermediate waters of the Pacific over space and time. Initially, by using geochemical tracers to look at the present distribution, sources and mixing of the water masses. Secondly, by using oxygen and carbon isotopes from sediment cores to study changes in Antarctic Intermediate Waters (AAIW) over the late Quaternary in the north Tasman Sea. ¶ The geochemical tracers highlight the presence of three separate intermediate water masses in the Pacific: North Pacific Intermediate Water (NPIW), AAIW and Equatorial Intermediate Water (EqIW). The EqIW has previously been considered an extension of intermediate water masses to the north or south. The unique geochemical characteristics of EqIW indicate, however, that it cannot be formed by direct mixing of the NPIW and AAIW. Geochemical tracers suggest instead that EqIW must also include mixing with nutrient rich, oxygen deficient, old Pacific Deep Water (PDW). ..

    Quaternary research in New Zealand since 2000: an overview

    Get PDF
    With the AQUA milestone of 30 years it seems an appropriate time to review the progress and achievements of Quaternary research in New Zealand. This article highlights some of the major achievements since the formal review of New Zealand’s Quaternary record by Newnham et al. (1999). The focus here is on paleoclimate and geochronology and is by no means a comprehensive review. We encourage members to write future articles for Quaternary Australasia (QA) about their exciting projects to keep the wider Australasian community informed. One of the main differences between Australian and New Zealand Quaternary science is the wide use of tephrochronology to correlate and date deposits and events across the landscape, helping to link terrestrial and marine records, especially in the North Island. There have been significant advances using glass-based fission-track dating, corrected for annealing, and the use of the electron microprobe and laser ablation inductively-coupled plasma mass spectrometry for obtaining major- and trace-element analyses, respectively, to chemically fingerprint individual glass shards in tephras to aid their correlation (Shane, 2000; Lowe, 2011). Also the identification and analysis of cryptotephras (concentrations of glass shards not visible as a layer) have greatly expanded the geographic range of many tephras, allowing the application of tephrochronology as a stratigraphic and dating tool across much wider areas than previously possible (Gehrels et al., 2008)

    Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean

    Get PDF
    We present Mg/Ca data for Globigerina bulloides from 10 core top sites in the southwest Pacific Ocean analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Mg/Ca values in G. bulloides correlate with observed ocean temperatures (7 degrees C-19 degrees C), and when combined with previously published data, an integrated Mg/Ca-temperature calibration for 7 degrees C-31 degrees C is derived where Mg/Ca (mmol/mol) = 0.955 x e(0.068 x T) (r(2) = 0.95). Significant variability of Mg/Ca values (20%-30%) was found for the four visible chambers of G. bulloides, with the final chamber consistently recording the lowest Mg/Ca and is interpreted, in part, to reflect changes in the depth habitat with ontogeny. Incipient and variable dissolution of the thin and fragile final chamber, and outermost layer concomitantly added to all chambers, caused by different cleaning techniques prior to solution-based ICPMS analyses, may explain the minor differences in previously published Mg/Ca-temperature calibrations for this species. If the lower Mg/Ca of the final chamber reflects changes in depth habitat, then LA-ICPMS of the penultimate (or older) chambers will most sensitively record past changes in near-surface ocean temperatures. Mean size-normalized G. bulloides test weights correlate negatively with ocean temperature (T = 31.8 x e(-30.5xwtN); r(2) = 0.90), suggesting that in the southwest Pacific Ocean, temperature is a prominent control on shell weight in addition to carbonate ion levels

    Coccolithophore biodiversity controls carbonate export in the Southern Ocean

    Get PDF
    Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio

    The advent of the Anthropocene in Australasia.

    Get PDF
    As early as the late 19th Century, several scientists had suggested that humans were starting to influence the physical environment of planet Earth (e.g. Marsh, 1864; Stoppani, 1873; Arrhenius, 1896; Chamberlain, 1897). This idea was resurrected and expanded in 2000 by Paul Crutzen, a Nobel Prize-winning chemist, and the late Eugene Stoermer, a professor of biology specialising in diatoms, who suggested that we had left the Holocene and entered the “Anthropocene” (Crutzen and Stoermer, 2000). As summarised by Steffen et al. (2011) and Wolfe et al. (2013), these iconoclastic scientists were referring to the Anthropocene as the interval of demonstrable human alteration of global biogeochemical cycles, beginning subtly in the late 18th Century following James Watt’s invention of the coal-fired steam engine, and accelerating markedly in the mid-20th Century (termed “The Great Acceleration”). Thus Crutzen and Stoermer (2000) argued that the Anthropocene should be an epoch, and for a starting date at the beginning of the Industrial Revolution (Monastersky, 2015)

    Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber

    No full text
    B/Ca ratios in foraminifera have attracted considerable scientific attention as a proxy for past ocean carbonate system. However, the carbonate system controls on B/Ca ratios are not straightforward, with ?[ inline image] ([ inline image]in situ – [ inline image]at saturation) correlating best with B/Ca ratios in benthic foraminifera, rather than pH, inline image, or inline image (as a simple model of boron speciation in seawater and incorporation into CaCO3 would predict). Furthermore, culture experiments have shown that in planktic foraminifera properties such as salinity and [B]sw can have profound effects on B/Ca ratios beyond those predicted by simple partition coefficients. Here, we investigate the controls on B/Ca ratios in G. ruber via a combination of culture experiments and core-top measurements, and add to a growing body of evidence that suggests B/Ca ratios in symbiont-bearing foraminiferal carbonate are not a straightforward proxy for past seawater carbonate system conditions. We find that while B/Ca ratios in culture experiments covary with pH, in open ocean sediments this relationship is not seen. In fact, our B/Ca data correlate best with [ inline image] (a previously undocumented association) and in most regions, salinity. These findings might suggest a precipitation rate or crystallographic control on boron incorporation into foraminiferal calcite. Regardless, our results underscore the need for caution when attempting to interpret B/Ca records in terms of the ocean carbonate system, at the very least in the case of mixed-layer planktic foraminifera

    Oral versus intravenous antibiotics for bone and joint infection

    Get PDF
    BACKGROUND The management of complex orthopedic infections usually includes a prolonged course of intravenous antibiotic agents. We investigated whether oral antibiotic therapy is noninferior to intravenous antibiotic therapy for this indication. METHODS We enrolled adults who were being treated for bone or joint infection at 26 U.K. centers. Within 7 days after surgery (or, if the infection was being managed without surgery, within 7 days after the start of antibiotic treatment), participants were randomly assigned to receive either intravenous or oral antibiotics to complete the first 6 weeks of therapy. Follow-on oral antibiotics were permitted in both groups. The primary end point was definitive treatment failure within 1 year after randomization. In the analysis of the risk of the primary end point, the noninferiority margin was 7.5 percentage points. RESULTS Among the 1054 participants (527 in each group), end-point data were available for 1015 (96.3%). Treatment failure occurred in 74 of 506 participants (14.6%) in the intravenous group and 67 of 509 participants (13.2%) in the oral group. Missing end-point data (39 participants, 3.7%) were imputed. The intention-to-treat analysis showed a difference in the risk of definitive treatment failure (oral group vs. intravenous group) of −1.4 percentage points (90% confidence interval [CI], −4.9 to 2.2; 95% CI, −5.6 to 2.9), indicating noninferiority. Complete-case, per-protocol, and sensitivity analyses supported this result. The between-group difference in the incidence of serious adverse events was not significant (146 of 527 participants [27.7%] in the intravenous group and 138 of 527 [26.2%] in the oral group; P=0.58). Catheter complications, analyzed as a secondary end point, were more common in the intravenous group (9.4% vs. 1.0%). CONCLUSIONS Oral antibiotic therapy was noninferior to intravenous antibiotic therapy when used during the first 6 weeks for complex orthopedic infection, as assessed by treatment failure at 1 year. (Funded by the National Institute for Health Research; OVIVA Current Controlled Trials number, ISRCTN91566927. opens in new tab.

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació
    corecore