4,735 research outputs found

    Spurious harmonic response of multipulse quantum sensing sequences

    Full text link
    Multipulse sequences based on Carr-Purcell decoupling are frequently used for narrow-band signal detection in single spin magnetometry. We have analyzed the behavior of multipulse sensing sequences under real-world conditions, including finite pulse durations and the presence of detunings. We find that these non-idealities introduce harmonics to the filter function, allowing additional frequencies to pass the filter. In particular, we find that the XY family of sequences can generate signals at the 2fac, 4fac and 8fac harmonics and their odd subharmonics, where fac is the ac signal frequency. Consideration of the harmonic response is especially important for diamond-based nuclear spin sensing where the NMR frequency is used to identify the nuclear spin species, as it leads to ambiguities when several isotopes are present.Comment: 6 pages, 7 figure

    On the origin of planets at very wide orbits from the re-capture of free floating planets

    Full text link
    In recent years several planets have been discovered at wide orbits (>100 AU) around their host stars. Theoretical studies encounter difficulties in explaining their formation and origin. Here we propose a novel scenario for the production of planetary systems at such orbits, through the dynamical recapture of free floating planets (FFPs) in dispersing stellar clusters. This process is a natural extension of the recently suggested scenario for the formation of wide stellar binaries. We use N-body simulations of dispersing clusters with 10-1000 stars and comparable numbers of FFPs to study this process. We find that planets are captured into wide orbits in the typical range ~100-10^6 AU, and have a wide range of eccentricities (thermal distribution). Typically, 3-6 x (f_FFP/1) % of all stars capture a planetary companion with such properties (where f_FFP is the number of FFP per star). The planetary capture efficiency is comparable to that of capture-formed stellar-binaries, and shows a similar dependence on the cluster size and structure. It is almost independent of the specific planetary mass; planets as well as sub-stellar companions of any mass can be captured. The capture efficiency decreases with increasing cluster size, and for a given cluster size the it increases with the host/primary mass. More than one planet can be captured around the same host and planets can be captured into binary systems. Planets can also be captured into pre-existing planetary and into orbits around black holes and massive white dwarfs, if these formed early enough before the cluster dispersal. In particular, stellar black holes have a high capture efficiency (>50 % and 5-10 x (f_FFP/1) % for capture of stars and planetary companions, respectively) due to their large mass. Finally, although rare, two FFPs or brown dwarfs can become bound and form a FFP-binary system with no stellar host.Comment: ApJ, in press. Added two figure

    Substellar companions and isolated planetary mass objects from protostellar disc fragmentation

    Full text link
    Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time scale that is short compared to the orbital period. We use a combination of hydrodynamic simulations and N-body orbit integrations to study the long term evolution of a fragmenting disc with an initial mass ratio to the star of M_disc/M_star = 0.1. For a disc which is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar mass star) up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 -- in which the companions are close to or beyond the deuterium burning limit -- appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ~1 au should differ from that of stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA

    Quantum sensing with arbitrary frequency resolution

    Full text link
    Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The continuous sampling further guarantees an excellent sensitivity, reaching a signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured during a one-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.Comment: Manuscript resubmitted to Science. Includes Supplementary Material

    One- and two-dimensional nuclear magnetic resonance spectroscopy with a diamond quantum sensor

    Full text link
    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with high precision (here 5 digits). The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. The technique will be useful for mapping nuclear coordinates in molecules en route to imaging their atomic structure.Comment: 5 pages, 5 figure
    corecore