289 research outputs found

    Complete quantum control of exciton qubits bound to isoelectronic centres

    Get PDF
    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing

    Memory effect in silicon time-gated single-photon avalanche diodes

    Get PDF
    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called "memory effect" is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons

    Linking resource slack to operational resilience: integration of resource-based and attention-based perspectives

    Get PDF
    With limited empirical evidence, prior research suggests resource slack as a fundamental feature of resilient operations and supply chains. This study draws insights from the resource-based theory to empirically examine the relationship between resource slack and operational resilience. The attention-based view of the firm is then used to argue that while resource slack may be an essential feature of operational resilience, its effect is mediated by organizational attention under varying conditions of strategic mission rigidity. These arguments are tested on primary data from 259 firms in a sub-Saharan African market, Ghana. Contrary to conventional wisdom, findings show that resource slack is not directly related to operational resilience. Rather, the study finds that the contribution of resource slack in driving operational resilience is channeled through organizational attention. Results further show that this indirect path is strengthened under conditions of low strategic mission rigidity. In expanding and clarifying extant literature on the resilience implications of resource slack, therefore, this study explains how operations and supply chain managers can combine organizational attention with low strategic mission rigidity conditions to convert resource slack into enhanced operational resilience outcomes

    Effects of time-gated detection in diffuse optical imaging at short source-detector separation

    Get PDF
    The adoption of a short source-detector distance, combined with a time-resolved acquisition, can be advantageous in diffuse optical imaging due to the stricter spatial localization of the probing photons, provided that the strong burst of early photons is suppressed using a time-gated detection scheme. We propose a model for predicting the effect of the time-gated measurement system using a time-variant operator built on the system response acquired at different gate delays. The discrete representation of the system operator, termed Spread Matrix, can be analyzed to identify the bottlenecks of the detection system with respect to the physical problem under study. Measurements performed on tissue phantoms, using a time-gated single-photon avalanche diode and an interfiber distance of 2 mm, demonstrate that inhomogeneities down to 3 cm can be detected only if the decay constant of the detector is lower than 100 ps, while the transient opening of the gate has a less critical impact

    Annexin 2A sustains glioblastoma cell dissemination and proliferation.

    Get PDF
    Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM.Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM.In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients

    High-speed integrated QKD system

    Get PDF
    Quantum key distribution (QKD) is nowadays a well-established method for generating secret keys at a distance in an information-theoretically secure way, as the secrecy of QKD relies on the laws of quantum physics and not on computational complexity. In order to industrialize QKD, low-cost, mass-manufactured, and practical QKD setups are required. Hence, photonic and electronic integration of the sender's and receiver's respective compo-nents is currently in the spotlight. Here we present a high-speed (2.5 GHz) integrated QKD setup featuring a transmitter chip in silicon photonics allowing for high-speed modulation and accurate state preparation, as well as a polarization-independent low-loss receiver chip in aluminum borosilicate glass fabricated by the femtosecond laser micromachining technique. Our system achieves raw bit error rates, quantum bit error rates, and secret key rates equivalent to a much more complex state-of-the-art setup based on discrete components [A. Boaron et al., Phys. Rev. Lett. 121, 190502 (2018)].& COPY; 2023 Chinese Laser Pres

    Variation in Susceptibility to Downy Mildew Infection in Spanish Minority Vine Varieties

    Get PDF
    Downy mildew is one of the most destructive diseases affecting grapevines (Vitis vinifera L.). Caused by the oomycete Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, it can appear anywhere where vines are cultivated. It is habitually controlled by the application of phytosanitary agents (copper-based or systemic) at different stages of the vine growth cycle. This, however, is costly, can lead to reduced yields, has a considerable environmental impact, and its overuse close to harvest can cause fermentation problems. All grapevines are susceptible to this disease, although the degree of susceptibility differs between varieties. Market demands and European legislation on viticulture and the use of phytosanitary agents (art. 14 of Directive 128/2009/EC) now make it important to know the sensitivity of all available varieties, including minority varieties. Such knowledge allows for a more appropriate use of phytosanitary agents, fosters the commercial use of these varieties and thus increases the offer of wines associated with different terroirs, and helps identify material for use in crop improvement programmes via crossing or genetic transformation, etc. Over 2020–2021, the susceptibility to P. viticola of 63 minority vine varieties from different regions of Spain was examined in the laboratory using the leaf disc technique. Some 87% of these varieties were highly susceptible and 11% moderately susceptible; just 2% showed low susceptibility. The least susceptible of all was the variety Morate (Madrid, IMIDRA). Those showing intermediate susceptibility included the varieties Sanguina (Castilla la Mancha, IVICAM), Planta Mula (Comunidad Valenciana, ITVE), Rayada Melonera (Madrid, IMIDRA), Zamarrica (Galicia, EVEGA), Cariñena Roja (Cataluña, INCAVI), Mandrègue (Aragón, DGA) and Bastardo Blanco (Extremadura, CICYTEX). The highly susceptible varieties could be differentiated into three subgroups depending on sporulation severity and density

    Variation in Susceptibility to Downy Mildew Infection in Spanish Minority Vine Varieties

    Get PDF
    Downy mildew is one of the most destructive diseases affecting grapevines (Vitis vinifera L.). Caused by the oomycete Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, it can appear anywhere where vines are cultivated. It is habitually controlled by the application of phytosanitary agents (copper-based or systemic) at different stages of the vine growth cycle. This, however, is costly, can lead to reduced yields, has a considerable environmental impact, and its overuse close to harvest can cause fermentation problems. All grapevines are susceptible to this disease, although the degree of susceptibility differs between varieties. Market demands and European legislation on viticulture and the use of phytosanitary agents (art. 14 of Directive 128/2009/EC) now make it important to know the sensitivity of all available varieties, including minority varieties. Such knowledge allows for a more appropriate use of phytosanitary agents, fosters the commercial use of these varieties and thus increases the offer of wines associated with different terroirs, and helps identify material for use in crop improvement programmes via crossing or genetic transformation, etc. Over 2020–2021, the susceptibility to P. viticola of 63 minority vine varieties from different regions of Spain was examined in the laboratory using the leaf disc technique. Some 87% of these varieties were highly susceptible and 11% moderately susceptible; just 2% showed low susceptibility. The least susceptible of all was the variety Morate (Madrid, IMIDRA). Those showing intermediate susceptibility included the varieties Sanguina (Castilla la Mancha, IVICAM), Planta Mula (Comunidad Valenciana, ITVE), Rayada Melonera (Madrid, IMIDRA), Zamarrica (Galicia, EVEGA), Cariñena Roja (Cataluña, INCAVI), Mandrègue (Aragón, DGA) and Bastardo Blanco (Extremadura, CICYTEX). The highly susceptible varieties could be differentiated into three subgroups depending on sporulation severity and density.This work, performed by the VIOR (Viticultura, Olivo y Rosa) group of the Misión Biológica de Galicia (CSIC), forms part of the project “Valorización de variedades minoritarias de vid por su potencial para la diversificación vitivinícola. Resiliencia a enfermedades fúngicas influenciadas por el cambio climático” (MINORVIN) (RTI 2018-101085-RC32), funded by MCIN/AEI/, 10.13039/501100011033 and the European Regional Development Fund.info:eu-repo/semantics/publishedVersio

    Allogenic tissue-specific decellularized scaffolds promote long-term muscle innervation and functional recovery in a surgical diaphragmatic hernia model

    Get PDF
    Congenital diaphragmatic hernia (CDH) is a neonatal defect in which the diaphragm muscle does not develop properly, thereby raising abdominal organs into the thoracic cavity and impeding lung development and function. Large diaphragmatic defects require correction with prosthetic patches to close the malformation. This treatment leads to a consequent generation of unwelcomed mechanical stress in the repaired diaphragm and hernia recurrences, thereby resulting in high morbidity and significant mortality rates. We proposed a specific diaphragm-derived extracellular matrix (ECM) as a scaffold for the treatment of CDH. To address this strategy, we developed a new surgical CDH mouse model to test the ability of our tissue-specific patch to regenerate damaged diaphragms. Implantation of decellularized diaphragmatic ECM-derived patches demonstrated absence of rejection or hernia recurrence, in contrast to the performance of a commercially available synthetic material. Diaphragm-derived ECM was able to promote the generation of new blood vessels, boost long-term muscle regeneration, and recover host diaphragmatic function. In addition, using a GFP + Schwann cell mouse model, we identified re-innervation of implanted patches. These results demonstrated for the first time that implantation of a tissue-specific biologic scaffold is able to promote a regenerating diaphragm muscle and overcome issues commonly related to the standard use of prosthetic materials
    corecore