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Complete quantum control of exciton qubits
bound to isoelectronic centres
G. Éthier-Majcher1, P. St-Jean1, G. Boso2, A. Tosi2, J.F. Klem3 & S. Francoeur1

In recent years, impressive demonstrations related to quantum information processing have

been realized. The scalability of quantum interactions between arbitrary qubits within an

array remains however a significant hurdle to the practical realization of a quantum computer.

Among the proposed ideas to achieve fully scalable quantum processing, the use of photons

is appealing because they can mediate long-range quantum interactions and could serve as

buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can

be coupled to light, but the former system lacks optical homogeneity while the latter suffers

from a low dipole moment, rendering their large-scale interconnection challenging. Here,

through the complete quantum control of exciton qubits, we demonstrate that nitrogen

isoelectronic centres in GaAs combine both the uniformity and predictability of atomic

defects and the dipole moment of semiconductor quantum dots. This establishes isoelec-

tronic centres as a promising platform for quantum information processing.
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I
soelectronic centres (ICs) are atomic-sized defects that were
first identified and studied several decades ago1. They are
formed from one, two or a small number of isovalent

impurities in a semiconductor. The IC investigated in this work
is composed of two nitrogen atoms positioned substitutionally on
the GaAs anionic sublattice as presented in Fig. 1a.

The physics of ICs is reminiscent of quantum dots (QDs), a
system widely studied for quantum computation2–6. Their
semiconductor host allows one to take advantage of convenient
optical selection rules for spin initialization, manipulation and
readout; to exploit dynamic charge doping, electrical coherent
control7 and device integration; and to fabricate high quality
Bragg reflectors and cavities. Just like QDs, ICs can trap multiple
charge configurations: single electrons (or holes for pseudo-
donors like Te in ZnSe), excitons, biexcitons and charged
excitons8. The latter could be used to take advantage of the
powerful single spin quantum control schemes demonstrated in
QDs2. Finally, there exist many isoelectronic centre/host systems
and a number of these centres have been spatially resolved and
individually studied: N in GaAs9 and GaP10; and Te in ZnSe11.

The atomic nature of ICs is also reminiscent of phosphorus
dopants in silicon, in which single qubit gates were realized12, and
NV centres in diamond, in which two-qubit gates and distant
spin entanglement have been demonstrated13,14. Shrinking
semiconductor nanostructures to the size of a few impurities
provides the predictability and uniformity of these atomic defects.
Owing to a confinement potential and symmetry perfectly defined
by the few substitutional sites involved within the host crystal

lattice, any configurational variation leads to a radical
modification of electronic states and large discrete variation of
the emission energy. Therefore, by spectrally selecting a single
configuration, configurational broadening, which is very
important for QDs, is suppressed. Inhomogeneous broadening
is then limited to the environmental disorder set by the host
material quality and purity. For the nitrogen pair configuration
shown in Fig. 1a, large-ensemble photoluminescence (PL)
measurements reveal an inhomogeneous broadening lower than
25 GHz15, which is comparable to that of NV centres and other
atomic defects16,17. This high optical homogeneity is of strategic
importance as it reduces the implementation complexity of
quantum processing schemes.

In this work, resonant PL of excitons bound to N pairs in GaAs
is measured. Through Rabi rotations of the exciton, we show that
the high homogeneity of ICs is complemented by an optical
dipole moment comparable to that of QDs18 and higher than that
of NV centres19. This should allow strong coupling with a cavity,
which is a key property for the realization of large-scale optical
interconnection of distant qubits and robust quantum
networks20,21. Moreover, the complete quantum control of
exciton qubits is demonstrated by Ramsey interferometry,
establishing ICs as a promising platform for quantum
information processing.

Results
Resonant PL. The coherent control of excitons is realized on
single nitrogen pairs using confocal microscopy. The PL intensity
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Figure 1 | Nitrogen pairs and coherent control scheme. (a) Nitrogen pairs of C2v symmetry in first anionic nearest-neighbour configuration.

(b) 5 mm� 5 mm off-resonance PL intensity map of nitrogen pairs in GaAs at 1.508 eV, showing that single nitrogen pairs are spatially resolved.

(c) Schematic representation of the excitonic fine structure of nitrogen pairs of C2v symmetry along with the emission polarization from each state.

To achieve coherent control of the exciton, Rabi oscillations between the ground state |0S and the exciton state |YS are driven at a frequency OR(t).

The population of |YS is obtained by measuring the luminescence from the cross-polarized state |XS. The transfer rate between the two states is gyx and

the characteristic time decay of the PL is tx. (d) Off-resonance polarization-resolved PL spectra of excitons bound to a single nitrogen pair, showing two

linearly polarized transitions.
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map of Fig. 1b shows spatially resolved nitrogen pairs emitting at
1.508 eV. The excitonic fine structure reveals emitters of C2v

symmetry and empirical pseudopotential calculations indicate a
first anionic neighbour configuration22. For the measurement
configuration shown in Fig. 1a, two transitions are forbidden
(dark) and two others are inaccessible (z), such that only four
linearly polarized transitions are expected in a strain free host23

(see Supplementary Note 1 and Supplementary Table 1).
However, the sample used in this study was grown at
suboptimal temperatures to intentionally generate crystal
imperfections and strain fields affecting the relative strength of
the crystal field and exchange interactions defining the excitonic
fine structure. In this case, similar to the case of strained QDs
where light- and heavy-hole degeneracy is lifted, four excitonic
transitions are pushed to higher energy and only four remain, as
shown schematically in Fig. 1c (see Supplementary Table 2). Of
these four transitions, only two bright linearly polarized states
|XS and |YS can be measured, as seen from the polarization-
resolved PL spectrum presented in Fig. 1d.

Resonant PL is measured using the experimental scheme
presented in Fig. 1c. A linearly polarized control pulse is tuned in
resonance to drive Rabi oscillations between the ground state |0S
(no exciton) and the state |YS at a frequency OR(t)¼ mE(t)/‘ ,
where m is the exciton dipole moment and E(t) the amplitude of
the electric field. The population created in |YS is partially
transferred at a rate gyx to the cross-polarized state |XS from
which the PL intensity is measured using a fast-gated single-
photon avalanche diode (SPAD)24. Hyperfine interaction is
believed to be the dominant transfer mechanism between |YS
and |XS as spin relaxation due to spin–orbit interaction or the
Bir–Pikus hamiltonian are quenched for strongly confined
excitons25,26. This mechanism does not couple |YS and |XS
directly and gyx will thus depend on all possible transfer rates
between bright excitons, |XS and |YS, and dark excitons, |ZS
and |DS (see Supplementary Note 2). Figure 2a shows the time-
correlated resonant PL at different excitation powers. Every curve
is fitted with a monoexponential decay with the same
characteristic time tx¼ 3.9 ns and with a varying background

signal originating from residual laser noise. The characteristic
time is the result of a complex dynamic governed by all possible
transfers between the four exciton states and their radiative
emission (see Supplementary Note 2 and Supplementary Fig. 1).
The total PL intensities are obtained by integrating the fitted
curves over the window defined in Fig. 2a.

Rabi rotations. Rabi rotations are first demonstrated using this
resonant PL scheme. Figure 2b displays the integrated PL inten-
sity measured as a function of the square root of the control laser
power, which is proportional to the pulse area y¼

R
OR(t)dt. This

control pulse rotates the qubit by an angle y about the axis R1 on
the Bloch sphere, as shown in Fig. 2c. Hence, for a p (2p) pulse,
the system is brought to the eigenstate |YS (|0S) and the PL from
|XS, directly proportional to the population of |YS, will be
maximal (minimal). The sinusoidal dependence of the measured
PL intensity is a clear signature of Rabi oscillations.

From the period of Rabi rotations fitted in Fig. 2b, an exciton
dipole moment of 65±28 D is extracted. Measurements from
several nitrogen pairs revealed dipole moments ranging from 5 to
65 D (see Supplementary Fig. 2) with an overall average of 27 D.
We believe that the large variation in dipole moment is not
intrinsic to ICs, but is due to the local strain fields deliberately
introduced in our sample. These are comparable to dipole
moments obtained from InGaAs QDs and thickness fluctuation
QDs in GaAs quantum wells. For InGaAs QDs, single particle
confinement energies dominate excitonic effects and measured
dipole moments range from 10 to 40 D27, which are consistent
with models assuming weak electron-hole correlation28. The
lateral size of thickness fluctuation QDs generally exceeds the
exciton Bohr radius such that both excitonic effects and the large
exciton wavefunction can enhance the oscillator strength29.
Dipole moments up to 75 D have been reported in this
system18, about twice those of InGaAs QDs. According to the
prevalent model of excitonic binding to ICs1,22, the electron is
confined to the nitrogen core potential while the hole is bound to
the electron by Coulomb interaction, which is weakened by
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Figure 2 | Rabi rotations. (a) Time-correlated resonant PL intensity from |XS for 3 excitation powers, showing an exponential decay fitted with the

characteristic time tx¼ 3.9 ns. The detector is gated 1 ns after the laser pulse to discriminate the PL signal from the strong control pulse. (b) Resonant

PL integrated intensity as a function of the square root of the control laser power. The points identified by labels I, II and III correspond to the data presented

in a. The solid line was fitted without considering any damping caused by EID. The dashed curve represents a fit of the data with an EID damping coefficient

of K2¼4 fs. Error bars are established from the range of intensities satisfactorily fitting PL decay curves. (c) Bloch vector trajectories in the rotating frame

for the three powers shown in a. The red arrows represent the initial and final states and R1 is the axis of rotation.
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repulsion from the nitrogen core. This binding mechanism
implies that excitonic effects could play a significant role in
explaining the large dipole moment observed.

Interestingly, the amplitude of Rabi oscillations is preserved
over nearly three complete rotations, indicating that ICs are not
subject to the important excitation-induced dephasing (EID)
consistently encountered in QDs. EID increases with excitation
power and can be modelled by a dephasing rate G2¼K2OR(t)2,
where coefficient K2 should be minimal to preserve the fidelity of
qubit manipulations. The results of Fig. 2b are best fitted without
any EID (K2B0), but taking into account the estimated errors on
the PL intensity, an upper bound of K2r4 fs is estimated (see
dashed curve). The coupling of excitons to longitudinal-acoustic
phonons, which is proportional to the square of the exciton
deformation potential, has been proposed as a dominant EID
mechanism30. In ICs, the tight localization of the electron
wavefunction reduces the deformation potential to 3.7 eV (ref. 31)
in comparison with 9 eV for QDs. Therefore, EID caused by
longitudnal-acoustic phonons is expected to be six times less
important in our system, in very good agreement with our
experimental results.

Ramsey interference. To show that excitons bound to ICs are
useable qubits, we demonstrate their complete quantum control
over the Bloch sphere and measure their coherence time by
Ramsey interferometry. Two p/2 pulses are tuned in resonance
with the exciton transition and delayed by t¼ tcþ tf, where tc

and tf represent respectively coarse and fine time delays (Fig. 3a).
As shown in Fig. 3b, the first pulse brings the quantum state on
the equatorial plane of the Bloch sphere and the second pulse
causes a rotation of p/2 about the axis defined by (cosf, sinf, 0),
where f¼ot is the phase acquired by the exciton. By selecting
the delay, a rotation on the Bloch sphere about an arbitrary axis
can be realized.

Figure 3c shows Ramsey fringes in the relative PL intensity
from the state |XS as the fine time delay tf between the two
pulses is swept while the coarse delay is kept constant at 50 ps. To
unambiguously demonstrate that quantum interference is rea-
lized, the amplitude of Ramsey fringes is shown in Fig. 3d as a
function of the coarse delay along with the autocorrelation
function of the laser pulse. The interference amplitude of the laser
decays with a time constant of 15 ps, an order of magnitude
shorter than the time decay of the Ramsey fringes, which is best
fitted by a gaussian function with a coherence time of T�2 ¼ 115
ps. This coherence time is similar or slightly higher than
coherence times of excitons bound to QDs27,32. The gaussian
decay is a signature of non-markovian dephasing, characterized
by a reservoir relaxation rate slower than the decoherence rate of
the two-level quantum system. Environmental fluctuations in the
vicinity of the nitrogen pair can affect the evolution of the exciton
wavefunction and could explain the non-markovian decoherence
observed4.

Discussion
Complete coherent control of excitons bound to nitrogen ICs in
GaAs was demonstrated through Rabi rotations and Ramsey
interferometry. The combination of high optical homogeneity
and a large dipole moment could prove to be crucial ingredients
for large-scale photonic integration of two-qubit gates, making
ICs a promising alternate platform for quantum computation. For
exciton qubits, low EID allows faster qubit manipulation that
could lead to the threshold for fault-tolerant quantum computa-
tion within the relatively short lifetime. Although the operating
temperature of the exciton qubit demonstrated here is limited to
15 K, higher temperatures are expected from nitrogen ICs located

deeper in the gap of GaAs22. Furthermore, the large exciton-
binding energies found in wider gap materials (for example, N
pairs in GaP1,33 and Te pairs in ZnSe11) should provide operating
temperatures similar to those of epitaxial QDs. It appears relevant
to investigate the impurity-host systems providing the optimal
characteristics for quantum information processing. Finally, ICs
are also well adapted for longer lived qubits like electron spins, as
the existence of negatively charged excitons allows exploiting the
control schemes already developed for QDs.

Methods
Sample growth. The sample was grown by molecular beam epitaxy and is
composed of a 25 nm GaAs:N layer clad by 5 nm layers of GaAs and sandwiched
between two Al0.25Ga0.75 As barriers.
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Figure 3 | Ramsey interference. (a) Pulse sequence for Ramsey

interference: two p/2 pulses with a delay of t¼ tfþ tc excite the exciton.

(b) Bloch vector trajectory in the Ramsey interference experiment in the

rotating frame. The first pulse rotates the Bloch vector about the axis R1.

The second rotation is about the axis R2 defined by the angle f¼ot.

Red arrows represent the initial and final excitonic states. (c) PL intensity as

a function of the fine delay tf for tc¼ 50 ps. Intensities are obtained by

fitting time-resolved PL curves with a monoexponential decay. Error bars

indicate the range of acceptable intensity values. The solid line represents a

sinusoidal fit of the data. (d) Amplitude of Ramsey fringes as a function of

the coarse delay tc along with the autocorrelation function of the laser. Error

bars indicate the range of acceptable amplitudes obtained from sinusoidal

fits similar to the one presented in c. Solid lines are Gaussian fits of the

data. An exciton coherence time of T�2 ¼ 115 ps is extracted.
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Resonant PL measurements. Microluminescence measurements are carried out
in a custom made confocal microscope inserted into a closed-looped cryostat at
4 K. Nitrogen pairs are located using a 780 nm CW laser coupled to an optical fibre.
Excitons are then optically driven at a rate of 40 MHz using a Ti:sapphire laser
tuned in resonance with one of the exciton states and coupled to the same optical
fibre. Pulses of B1 ps and B15 ps are used to drive Rabi oscillations and similar
results are obtained for both pulse widths. The 15 ps pulses are generated by
spectrally filtering 100 fs pulses using a diffraction grating in a 2f configuration with
the optical fibre. The weak PL signal and the strong control laser are discriminated
in time using a fast-gated SPAD24,34. The detector is kept off when hit by the
control laser and then rapidly turned on (in less than 200 ps) to maximize the
detected PL signal. Nine orders of magnitude of control light are suppressed by
gating the SPAD 1 ns after the excitation pulse and by cross-polarized PL detection.
For Rabi rotations measurement, a linear increase of PL intensity with excitation
power originating from afterpulsing effect due to carriers trapped in the SPAD
detector was substracted from the data. This afterpulsing effect is also responsible
for larger error bars in Fig. 2c at higher laser power.

Ramsey interference. Ramsey interferometry was realized by generating pairs of
15 ps pulses of controllable delay with a phase-stabilized Michelson interferometer.
The coarse delay is controlled by a motorized delay stage and the fine delay by a
piezoelectric positioner. The stabilization of the interferometer provides a resolu-
tion better than 0.1 fs on the fine delay. The presented PL intensities are relative to
the intensity at tf¼ 0 fs.
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How to cite this article: Éthier-Majcher, G. et al. Complete quantum control of exciton
qubits bound to isoelectronic centres. Nat. Commun. 5:3980 doi: 10.1038/ncomms4980
(2014).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4980 ARTICLE

NATURE COMMUNICATIONS | 5:3980 | DOI: 10.1038/ncomms4980 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Results
	Resonant PL

	Figure™1Nitrogen pairs and coherent control scheme.(a) Nitrogen pairs of C2v symmetry in first anionic nearest-neighbour configuration. (b) 5thinspmumtimes5thinspmum off-resonance PL intensity map of nitrogen pairs in GaAs at 1.508thinspeV, showing that s
	Rabi rotations

	Figure™2Rabi rotations.(a) Time-correlated resonant PL intensity from |Xrang for 3 excitation powers, showing an exponential decay fitted with the characteristic time taux=3.9thinspns. The detector is gated 1thinspns after the laser pulse to discriminate 
	Ramsey interference

	Discussion
	Methods
	Sample growth

	Figure™3Ramsey interference.(a) Pulse sequence for Ramsey interference: two pisol2 pulses with a delay of tau=tauf+tauc excite the exciton. (b) Bloch vector trajectory in the Ramsey interference experiment in the rotating frame. The first pulse rotates th
	Resonant PL measurements
	Ramsey interference

	ThomasD. G.HopfieldJ. J.Isoelectronic traps due to nitrogen in gallium phosophidePhys. Rev.1506806891966PressD.LaddT. D.ZhangB.YamamotoY.Complete quantum control of a single quantum dot spin using ultrafast optical pulsesNature4562182212008KimD.CarterS. G
	We would like to thank N. Bertone for initiating contacts between Polytechnique Montréal and Politecnico di Milano. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




