61 research outputs found

    Miscible displacement fronts of shear thinning fluids inside rough fractures

    Get PDF
    The miscible displacement of a shear-thinning fluid by another of same rheological properties is studied experimentally in a transparent fracture by an optical technique imaging relative concentration distributions. The fracture walls have complementary self-affine geometries and are shifted laterally in the direction perpendicular to the mean flow velocity {\bf U} : the flow field is strongly channelized and macro dispersion controls the front structure for P\'{e}clet numbers above a few units. The global front width increases then linearly with time and reflects the velocity distribution between the different channels. In contrast, at the local scale, front spreading is similar to Taylor dispersion between plane parallel surfaces. Both dispersion mechanisms depend strongly on the fluid rheology which shifts from Newtonian to shear-thinning when the flow rate increases. In the latter domain, increasing the concentration enhances the global front width but reduces both Taylor dispersion (due to the flattening of the velocity profile in the gap of the fracture) and the size of medium scale front structures

    Characterization of fracture aperture field heterogeneity by electrical resistance measurement

    Get PDF
    We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement xperiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create “channel” or “barrier” structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity →U. In the “channel” geometry, the resistance displays an initial linear variation followed by a tail part which reïŹ‚ects the velocity contrast between slow and fast ïŹ‚ow channels. In the “barrier” geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple ïŹ‚ow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement.Fil: Boschan, Alejandro. Universidad de Buenos Aires. Facultad de IngenierĂ­a. Departamento de FĂ­sica. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Ippolito, Irene Paula. Universidad de Buenos Aires. Facultad de IngenierĂ­a. Departamento de FĂ­sica. Grupo de Medios Porosos; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Chertcoff, Ricardo HĂ©ctor. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de IngenierĂ­a. Departamento de FĂ­sica. Grupo de Medios Porosos; ArgentinaFil: Hulin, J. P.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; FranciaFil: Auradou, H.. Universite de Paris Xi. Laboratoire Automatiques et Systeme Thermiques; Franci

    Two-Photon 2s<->1s Transitions during Recombination of Hydrogen in the Universe

    Full text link
    Based on the standard cosmological model, we calculate the correction to the rate of two-photon 2s1s transitions in the hydrogen atom under primordial hydrogen plasma recombination conditions that arises when the induced transitions under equilibrium background radiation with a blackbody spectrum and plasma recombination radiation are taken into account.Comment: 20 pages, 9 figure

    CMB constraints on the fine structure constant

    Full text link
    We study constraints on time variation of the fine structure constant alpha from cosmic microwave background (CMB) taking into account simultaneous change in alpha and the electron mass m_e which might be implied in unification theories. We obtain the constraints -0.097 < Delta alpha/alpha < 0.034 at 95% C.L. using WMAP data only, and -0.042 < Delta alpha/alpha < 0.026 combining with the constraint on the Hubble parameter by the HST Hubble Key Project. These are improved by 15% compared with constraints assuming only alpha varies. We discuss other relations between variations in alpha and m_e but we do not find evidence for varying alpha.Comment: 19 pages, 8 figure

    How exactly did the Universe become neutral?

    Get PDF
    We present a refined treatment of H, He I, and He II recombination in the early Universe. The difference from previous calculations is that we use multi-level atoms and evolve the population of each level with redshift by including all bound-bound and bound-free transitions. In this framework we follow several hundred atomic energy levels for H, He I, and He II combined. The main improvements of this method over previous recombination calculations are: (1) allowing excited atomic level populations to depart from an equilibrium distribution; (2) replacing the total recombination coefficient with recombination to and photoionization from each level directly at each redshift step; and (3) correct treatment of the He I atom, including the triplet and singlet states. We find that the ionization fraction x_e = n_e/n_H is approximately 10% smaller at redshifts <~800 than in previous calculations, due to the non-equilibrium of the excited states of H, which is caused by the strong but cool radiation field at those redshifts. In addition we find that He I recombination is delayed compared with previous calculations, and occurs only just before H recombination. These changes in turn can affect the predicted power spectrum of microwave anisotropies at the few percent level. Other improvements such as including molecular and ionic species of H, including complete heating and cooling terms for the evolution of the matter temperature, including collisional rates, and including feedback of the secondary spectral distortions on the radiation field, produce negligible change to x_e. The lower x_e at low z found in this work affects the abundances of H molecular and ionic species by 10-25%. However this difference is probably not larger than other uncertainties in the reaction rates.Comment: 24 pages, including 18 figures, using emulateapj.sty, to appear in ApJ, the code recfast can be obtained at http://www.astro.ubc.ca/people/scott/recfast.html (in FORTRAN) and http://cfa-www.harvard.edu/~sasselov/rec/ (in C

    The Adsorption of H2O on TiO2 and SnO2(110) Studied by First-Principles Calculations

    Full text link
    First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H2_2O adsorption on the (110) surface of TiO2_2 and SnO2_2. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and the cases of full and half coverage are studied. Both molecular and dissociative (H2_2O →\rightarrow OH−^- + H+^+) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrical configurations. It is found that for both TiO2_2 and SnO2_2 an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO2_2 and SnO2_2 are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented and their relation with experimental UPS spectra is discussed

    Cryopyrin-Associated Periodic Syndrome: An Update on Diagnosis and Treatment Response

    Get PDF
    Cryopyrin-associated periodic syndrome (CAPS) is a rare hereditary inflammatory disorder encompassing a continuum of three phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease. Distinguishing features include cutaneous, neurological, ophthalmologic, and rheumatologic manifestations. CAPS results from a gain-of-function mutation of the NLRP3 gene coding for cryopyrin, which forms intracellular protein complexes known as inflammasomes. Defects of the inflammasomes lead to overproduction of interleukin-1, resulting in inflammatory symptoms seen in CAPS. Diagnosis is often delayed and requires a thorough review of clinical symptoms. Remarkable advances in our understanding of the genetics and the molecular pathway that is responsible for the clinical phenotype of CAPS has led to the development of effective treatments. It also has become clear that the NLRP3 inflammasome plays a critical role in innate immune defense and therefore has wider implications for other inflammatory disease states

    Transient mechanics of foams and emulsions

    No full text
    Systems far from equilibrium have numerous practical uses, but challenge our understanding of their underlying physics. Materials like foams, emulsions, suspensions and granular matter can show liquidlike properties or get trapped in a solidlike jammed state. The phase transition between the flowing and static state is often referred to as the ‘jamming transition‘. This work focuses on the mechanical behavior of amorphous viscoelastic materials, close to the jamming point. In many traditional solids, the relation between stress and strain is well described by a linear proportionality, known as Hooke’s law. In jammed solids, by contrast, the stressstrain relation quickly becomes nonlinear, making them much harder to model. Here we ask how and why the linear response breaks. To answer the questions, we investigate the breakdown of linear response as a function of deformation rate and amplitude.Engineering Thermodynamic

    Jamming and irreversibility

    Get PDF
    We investigate irreversibility in soft frictionless disk packings on approach to the unjamming transition. Using simulations of shear reversal tests, we study the relationship between plastic work and irreversible rearrangements of the contact network. Infinitesimal strains are reversible, while any finite strain generates plastic work and contact changes in a sufficiently large packing. The number of irreversible contact changes grows with strain, and the stress–strain curve displays a crossover from linear to increasingly nonlinear response when the fraction of irreversible contact changes approaches unity.Engineering Thermodynamic
    • 

    corecore