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Abstract
We investigate irreversibility in soft frictionless disk packings on approach to the unjamming transition. Using simulations of 
shear reversal tests, we study the relationship between plastic work and irreversible rearrangements of the contact network. 
Infinitesimal strains are reversible, while any finite strain generates plastic work and contact changes in a sufficiently large 
packing. The number of irreversible contact changes grows with strain, and the stress–strain curve displays a crossover from 
linear to increasingly nonlinear response when the fraction of irreversible contact changes approaches unity.
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1  Introduction

Among many other topics in the physics of granular mat-
ter, Bob Behringer’s research has had outsized impact on 
the field of jamming [1–3]. His measurements of the jump 
and subsequent power law growth in the contact number 
above a critical packing fraction [4] represents the first, and 
still one of the few [5–7], measurements of a major hall-
mark of isotropic jamming. His work on shear jamming [8], 
dilatancy [9], and contact force statistics [10, 11] upended 
the conventional view of the jamming phase diagram and 
illuminated how granular materials’ rigidity encodes their 
loading history. Here, inspired by Bob’s work, we ask how 
shearing can wipe out the memory of an initially isotropic 
state in a weakly jammed solid. In other words, how does 
irreversibility emerge near jamming?

Packings of soft spheres prepared at small but finite pres-
sure are marginal solids—while their response to infini-
tesimal strains is elastic [1], a small shear stress suffices 
to instigate quasistatic plastic flow [12, 13]. Recently there 
has been considerable interest in how the ensemble-aver-
aged stress–strain curve for shear becomes nonlinear, and 

in particular on how the crossover from linear to nonlinear 
response depends on the distance to jamming [14–23]. The 
shear strain required to make or break a contact vanishes in 
the limit of large system sizes, so finite deformations neces-
sarily involve topological changes to the contact network 
[24–28]. It is therefore natural to ask about the relationship 
between nonlinearity and plasticity, especially when one 
approaches (un)jamming. More precisely, we ask whether 
there is a correlation between the linear-to-nonlinear crosso-
ver and (ir)reversibile contact changes.

To probe nonlinearity and irreversibility near jamming, 
we study shear reversal in marginally jammed packings of 
athermal, frictionless, purely repulsive soft spheres. We 
begin from an isotropic state prepared at a targeted pressure 
p. We use this initial pressure (prior to shearing) to quan-
tify the distance to unjamming at p = 0 . After preparation, 
the system is subjected to simple shear in small quasistatic 
steps to a maximum strain �m . The shearing direction is then 
reversed, and the system is returned to zero strain. A load is 
reversible if the stress follows the loading curve back to its 
initial value at zero strain. Reversible and irreversible defor-
mations are illustrated in Fig. 1 with data from our simula-
tions. This complements similar irreversibility under volu-
metric strain as observed in [21] and interpreted in terms of 
a history-dependent critical packing fraction.

The present work builds on results from Boschan et al. 
[19, 29], who studied the loading curve but did not consider 
shear reversal. The loading curve was found to be linear up 
to a strain scale �† ∼ p . After �† the stress continues to grow, 
albeit more slowly than an extrapolation of the initial linear 
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trend. The crossover to steady plastic flow occurs later, at a 
distinct strain scale �y ≃ 0.05 . Simulations of large ampli-
tude oscillatory shear at finite rate also showed two distinct 
crossovers with identical scaling properties [22].

Boschan et al. [19] also studied contact changes, i.e. made 
and broken contacts during shearing. They found that the 
linear-to-nonlinear crossover at �† is also evident in the con-
tact change statistics, as detailed in Sect. 4. It is plausible 
that contact changes are a proxy for irreversible rearrange-
ments, but this must be verified—while rearrangements 
involve contact changes, not all rearrangements are irrevers-
ible [22, 30–35].

Here we probe nonlinearity and and irreversibility during 
a loading-unloading cycle. We first monitor the plastic work 
performed during the cycle, and then correlate these results 
to the statistics of contact changes at the particle scale. We 
find, first, that there is finite plastic work even when the 
ensemble-averaged stress–strain curve is linear. Consistent 
with this observation, we also find that irreversible contact 
changes accrue prior to the loss of linearity. Second, prior to 
�† , some fraction of the contact changes are reversible. After 
�† , when the stress–strain curve is nonlinear, essentially all 
contact changes are plastic.

2 � Model and methods

We perform two-dimensional simulations of athermal fric-
tionless disks, a standard model with a jamming transition 
[2]. Particles experience a spring-like force proportional to 
their overlap �ij = (Ri + Rj) − rij , where Ri and Rj denote the 
radii and rij is the length of the vector �ij pointing from the 
center of particle i to j. The contact force on particle i due 
to particle j is purely repulsive, and there is no interaction 
when the particles are not in contact,

where a hat indicates a unit vector. We fix the units of stress 
by setting the spring constant k and mean particle size to 
unity. The stress tensor is

where Greek indices denote Cartesian coordinates, and V is 
the total area of the unit cell.

Initial conditions are created by randomly populating the 
bi-periodic simulation box and then using a nonlinear conju-
gate gradient energy minimization protocol to quench instan-
taneously to a local minimum of the elastic potential energy at 
fixed volume [36]. The box is then allowed to undergo small 
changes in size and shape to achieve a target pressure p and zero 
shear stress—these are called “shear-stabilized” packings in the 
nomenclature of Dagois-Bohy et al. [37, 38]. Packings are bidis-
perse to avoid crystallization; we use the standard [1, 36] 50:50 
mixture of small and large particles and a radius ratio of 1:1.4.

Once the initial state is prepared, we apply quasistatic 
simple shear using Lees-Edwards boundary conditions 
with small logarithmically-spaced steps ranging between 
�� = 10−8 … 10−3 . After each strain step the energy is re-
minimized [36] while holding the strain fixed, so particles 
follow quasistatic trajectories. Once a maximum strain �m is 
reached, the direction of shear is reversed and the system is 
returned to zero strain, again via a series of small logarith-
mically-spaced steps.

In order to quantify irreversibility, we calculate the plastic 
work Wp of the loading/unloading cycle,

where upwards and downwards pointing arrows are used 
to indicate the loading and unloading curves, respectively. 
Clearly Wp is zero when the response is reversible.

The phenomenology of a shear reversal test in weakly 
jammed soft spheres is illustrated in Fig. 1. In panel (a), the 
maximum shear strain �m = 10−5 is so small that no contact 
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Fig. 1   Sample output from a loading-unloading cycle in simulations. 
a If deformation is reversible, the loading curve �(�↑) and unloading 
curve �(�↓) coincide. b In an irreversible deformation there is hyster-
esis, and the enclosed area is equal to the plastic work



Jamming and irreversibility﻿	

1 3

Page 3 of 7     58 

changes occur [26, 27]. The stress–strain curve is linear and the 
loading and unloading curves coincide. In panel (b), the maxi-
mum shear strain �m = 10−2 is substantially larger. On reversal 
the stress decreases but does not retrace the loading curve. The 
loading and unloading curves are both nonlinear. Because there 
is hysteresis, there is an associated plastic work. In addition to 
the plastic work, irreversibility can be quantified by the plastic 
strain �p and a plastic stress �p , corresponding to the intercepts 
of the unloading curve with the x- and y-axis, respectively.

3 � Plastic work

We perform shear reversal tests for a range of preparation 
pressures p and varying maximum strain �m . Figure 2 illus-
trates loading and unloading curves for p = 10−4 and �m 
ranging from 10−5 to 10−2 in half-decade steps. The result is 
representative of other pressures.

To quantify the appearance of irreversibility, we ana-
lyze the plastic work as a function of �m and p, as shown in 
Fig. 3. We find nonzero Wp for all investigated maximum 

strains, which are as small as 10−5 . (As noted above, pack-
ings of finite size can be sheared reversibly if the contact 
network remains unchanged, but this strain interval van-
ishes in the large system size limit [26, 27]). For each 
pressure Wp has an approximately power law growth with 
�m , with an apparent exponent that varies with pressure.

To better understand the pressure dependence of Wp , we 
seek to collapse the data to a master curve. Anticipating 
a correlation with the onset of nonlinearity, we plot the 
rescaled variable x ≡ �m∕p ∼ �m∕�

† . On the other axis we 
plot the rescaled work W ≡ Wp∕p

� for some exponent � . To 
motivate � , we note that for small values of �m , the loading 
curve is associated with work W↑ ∼ G0�

2
m

 , where G0 ∼ p1∕2 
is the shear modulus for Hookean particles near jamming 
[1, 39, 40]. If we assume G0 also sets the relevant scale for 
Wp at small �m , then we expect Wp ∼ p1∕2�2

m
 . Rearranging 

in favor of �m∕p gives Wp∕p
5∕2 ∼

(

�m∕p
)2 , which requires 

� = 5∕2 . This prediction is tested in the log-log plot of 
Fig. 3b, where we find data collapse to a curve with an ini-
tial slope of 2. When x ≫ x∗ ∼ O(1) the plastic work grows 
more slowly with �m , with an exponent of roughly 3/2,

Plasticity is indeed sensitive to �† , because data for Wp col-
lapse with the rescaled variable x. But irreversibility does 
not “turn on” when the ensemble-averaged stress–strain 
curve becomes nonlinear, as indicated by measurable Wp 
even when the curve is linear.

4 � Contact changes

We now seek to relate irreversibility to the evolution of 
contact changes during loading and unloading.

As first shown in Ref. [19] and verified below, the scale 
�† is apparent in the evolution of the number of made and 
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Fig. 3   a Plastic work versus 
maximum strain for varying 
pressures (see legend). b Col-
lapse to a master curve with 
� = 5∕2 . The dashed lines have 
slopes 2 and 3/2
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broken contacts per particle, which we refer to as the con-
tact change density ncc(�) . We now monitor contact changes 
during unloading to see to what extent the original contact 
network is recovered (i.e. broken contacts are re-made and 
made contacts are re-broken). Contact changes are always 
identified with respect to the initial condition, even during 
unloading. The “plastic contact change density” npcc , equal 
to ncc at the end of the unloading curve, is a measure of 
irreversible (i.e. plastic) contact changes.

Figure  4 depicts loading and unloading curves for 
three values of �m and three different initial pressures 
p = 10−5, 10−4 and 10−3 . For the lowest �m , in panel (a), 
most contact changes are recovered at the end of the cycle 
and ncc has a nonzero slope. npcc is nevertheless nonzero, and 
it increases as p tends to zero. Plastic contact changes also 
increase with increasing �m (panels (b) and (c)). In the final 
panel a large fraction of the contact changes are unrecover-
able, ncc hits the vertical axis with zero slope, and npcc is 
nearly equal to ncc(�m).

4.1 � Contact changes during loading

Figure 5 depicts ncc during loading. The figure shows that 
data for different pressures can be collapsed to a master 
curve by plotting N ≡ ncc∕(�

†)1∕2 ∼ ncc∕p
1∕2 as a function 

of y = �∕p ∼ �∕�† . This collapse was first demonstrated in 
Ref. [19]; for completeness we present it in Fig. 5 using data 
from the present study. We find

The crossover y∗ ∼ O(1) is compatible with x∗ from the plas-
tic work. For later reference, we note that

when 𝛾m > 𝛾† = y∗ p . We estimate am ≈ 3.7 ± 0.1 by fitting 
Eq. (6) to N  for y > 10.

(5)N ∼

{

y y < y∗

y1∕2 y > y∗ .

(6)ncc ≃ am�
1∕2
m

We note that, by definition, ncc changes by an amount 
1 / N when the system has undergone a strain �cc sufficient 
to produce one contact change. Hence

and the average strain interval between contact changes, �cc 
can be read off from the slope of the curves in Fig. 4. (Alter-
natively, the probability of a contact change in the interval 
[� , � + d�) is 1∕�cc ). In particular, when the loading curve is 
linear, there is a typical strain interval �cc ∼ p1∕2∕N between 
contact changes. Van Deen et al. [26, 27] reached compat-
ible results by directly resolving contact changes. As noted 
above, �cc vanishes in the large system size limit.

4.2 � Contact changes after reversal

To quantify to what extent the initial contact network can be 
recovered under reversal, we now monitor the plastic contact 
change density npcc . Clearly npcc = 0 if the initial contact net-
work is fully recovered. Figure 6 plots npcc as a function of �m 
for three pressures and system sizes N = 128 , 512, and 1024. 
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We find npcc is an increasing function of �m , and for a given �m 
it is larger at smaller pressures. There is also dependence on N.

The system size-dependence in npcc suggests that the 
contact change strain �cc ∼ p1∕2∕N plays a dominant role, 
as opposed to �† ∼ p . To test this hypothesis, we attempt 
to collapse data to a master curve by plotting as a func-
tion of z ≡ �mN∕p

1∕2 ∼ �m∕�cc . We find collapse plotting 
P ≡ n

p
ccN

1∕2∕p1∕4 versus p1∕2∕N , as shown in Fig. 6b. The 
master curve is

The crossover value z∗ ∼ O(102) . Therefore

after the system has undergone on the order of one hundred 
contact changes. The constant ap ≈ 3.5 ± 0.1.

4.3 � Relating nonlinearity and irreversibility

We can use the above observations to interpret the strain scale 
�† in terms of irreversibility. To this end, it is useful to intro-
duce the “plastic fraction”

where nm
cc

 is the value of ncc at the end of loading. fp quanti-
fies the extent to which marginal contact changes tend to be 
plastic. If fp(�m) = 0 , then all marginal contact changes in 
an infinitesimal interval around �m are reversible. If fp = 1 , 
all contact changes are plastic.

While a direct numerical evaluation of fp is noisy, we can 
infer its scaling properties by noting that
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From Eq. (9) it follows that

in the N → ∞ limit. Similarly, Eq. (6) implies that

when 𝛾m > 𝛾† . Thus fp plateaus at a value ap∕am ≈ 0.95 
when 𝛾m > 𝛾† . In other words, after the linear-to-nonlinear 
crossover, around 95% of the subsequent contact changes 
are plastic. By contrast, for smaller values of �m the plastic 
fraction evolves with strain.

4.4 � From contact changes to the stress–strain curve

A remaining challenge is to determine how plastic events 
impact stress buildup. Here we make a first attempt. We 
expect irreversible contact changes to have an associated 
stress drop ��p∕N  due to an eigenvalue of the Hessian 
matrix going to zero [41, 42]. Then we assume that the 
infinitesimal stress d� generated by a strain d� has both an 
elastic contribution and an offsetting stress release due to 
irreversible events

Using Eq. (9) and rewriting in dimensionless form gives

 It remains to determine the typical stress drop amplitude, 
��p . The scaling relation ��p ∼ p suggests itself purely on 
dimensional grounds. Assuming this form then predicts that 
the right hand side of Eq. (15) depends on � and p only 
via their ratio �∕p . Reassuringly, this is consistent with the 
linear-to-nonlinear crossover at �† ∼ p , and with recent 
measurements of the secant modulus during shear startup 
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[19] and the storage modulus in oscillatory shear [17, 22]. 
We conclude that the typical stress drop is indeed linear in 
p. Eq. (15) can then be integrated to find

 This stress–strain curve is compatible with Wp in Fig. 3b, 
including the �3∕2 scaling beyond � ≈ �†.

The approach presented above is semi-empirical. A more 
fundamental motivation would require directly identifying 
plastic events to determine their frequency and associated 
stress drops. The necessary theoretical tools were recently 
developed in Refs. [42–44].

5 � Discussion

We have investigated irreversibility at the macro and micro 
scale in systems near jamming, evidencing irreversibility 
in both the plastic work and the contact change statistics 
for small shear strains. Initially the average loading curve 
is linear and most contact changes are reversible. Increas-
ing the maximum strain increases the number and fraction 
of plastic contact changes. For 𝛾 > 𝛾† , the loading curve 
becomes nonlinear and nearly all contact changes are plastic. 
The onset of nonlinearity therefore corresponds not to the 
onset of irreversibility (as commonly assumed in continuum 
elasto-plastic theories), but to “fully developed” irrevers-
ibility, as reflected in the saturation of the plastic fraction fp . 
This crossover occurs earlier for smaller �† ∼ p.

With hindsight, the above scenario is apparent in the 
contact change statistics. For small �m , as in Fig. 4a, the 
plastic contact change density is much smaller than nm

cc
 , and 

the unloading branch of the ncc curve ends with a nonzero 
slope—indicating that shearing the system “a little bit fur-
ther” to 𝛾↓ < 0 would bring the system closer to its initial 
contact topology, i.e. fewer net contact changes. In contrast, 
for large �m , as in Fig. 4c, npcc is nearly equal to nm

cc
 , and the 

unloading curve is flat—the system has effectively lost all 
memory of its initial condition.

Our work has correlated the onset of nonlinearity at the 
macro scale to a particle scale crossover from reversible to 
irreversible contact changes. Both of these crossovers are 
sensitive to the proximity to jamming. We have also sug-
gested a phenomenological approach to relate irreversible 
rearrangements to the form of the loading curve, highlight-
ing the need for a deeper understanding of the statistics of 
stress drops during loading.
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