21 research outputs found

    Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity

    Get PDF
    Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients

    First external quality assessment of molecular and serological detection of rift valley fever in the western Mediterranean region

    Get PDF
    Pas de clé UTRift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya,Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment— EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently available

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Episodi di peste equina in Namibia dal 2006 al 2013: Rilievi clinici, patologici e molecolari

    No full text
    African horse sickness (AHS) is a vector-borne viral disease of equids, endemic in Sub-Saharan Africa. This article reports the clinic-pathological and laboratory findings observed in the framework of passive surveillance during the AHS outbreaks which occurred in Namibia between 2006 and 2013. This study was conducted in the framework of the collaboration among the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (Teramo, Italy), the Namibian Ministry of Agriculture Water and Forestry, and the Namibian National Veterinary Association. A total of 92 horses were investigated, showing different clinical form of AHS: peracute/acute (n = 43), sub-acute (n = 21) and mild AHS fever (n = 19). Clinical data were not available for 9 horses, because they were found dead. Pathological findings have been recorded for 35 horses. At necropsy, pulmonary and subcutaneous oedema, haemorrhages and enlargement of lymph nodes were mainly observed. Diagnosis was confirmed by laboratory testing, AHS virus (AHSV) was isolated from 50 horses and the identified serotypes were: 1, 2, 4, 6, 7, 8, and 9. The phylogenetic analysis of the S10 genome sequences segregated the Namibian AHSV strains in the same clusters of those circulating in South Africa in recent years. The description of AHS clinical, pathological, and laboratory features of AHS provided in this article is of value for differential diagnosis and control of AHS, especially in areas currently free from this disease

    Rift Valley Fever Virus among Wild Ruminants, Etosha National Park, Namibia, 2011

    No full text
    After a May 2011 outbreak of Rift Valley fever among livestock northeast of Etosha National Park, Namibia, wild ruminants in the park were tested for the virus. Antibodies were detected in springbok, wildebeest, and black-faced impala, and viral RNA was detected in springbok. Seroprevalence was high, and immune response was long lasting

    Complement Activation Profile in Myasthenia Gravis Patients: Perspectives for Tailoring Anti-Complement Therapy

    No full text
    The complement system plays a key role in myasthenia gravis (MG). Anti-complement drugs are emerging as effective therapies to treat anti-acetylcholine receptor (AChR) antibody-positive MG patients, though their usage is still limited by the high costs. Here, we searched for plasma complement proteins as indicators of complement activation status in AChR-MG patients, and potential biomarkers for tailoring anti-complement therapy in MG. Plasma was collected from AChR-MG and MuSK-MG patients, and healthy controls. Multiplex immunoassays and ELISA were used to quantify a panel of complement components (C1Q, C2, C3, C4, C5, Factor B, Factor H, MBL, and properdin) and activation products (C4b, C3b, C5a, and C5b-9), of classical, alternative and lectin pathways. C2 and C5 levels were significantly reduced, and C3, C3b, and C5a increased, in plasma of AChR-MG, but not MuSK-MG, patients compared to controls. This protein profile was indicative of complement activation. We obtained sensitivity and specificity performance results suggesting plasma C2, C3, C3b, and C5 as biomarkers for AChR-MG. Our findings reveal a plasma complement “C2, C3, C5, C3b, and C5a” profile associated with AChR-MG to be further investigated as a biomarker of complement activation status in AChR-MG patients, opening new perspectives for tailoring of anti-complement therapies to improve the disease treatment

    Results of the EQA for RVF IgM antibodies detection.

    No full text
    <p>Wild rum: wild ruminants (<i>Antidorcasmarsupialis</i>). Pos: RVF seropositive status; Neg: RVF seronegative status. + /—: samples identified as positive or negative by the participants. FP: false positive</p><p><sup><i>†</i></sup>IDvet: ID. Screen RVF IgM Capture</p><p><sup><i>§</i></sup><i>In-house assay</i>: test based on crude cell lysate as antigen</p><p>* Laboratory providing multiple datasets</p><p>Results of the EQA for RVF IgM antibodies detection.</p
    corecore