92 research outputs found
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Sulfatase-2 from Cancer Associated Fibroblasts: An Environmental Target for Hepatocellular Carcinoma?
Introduction: Heparin sulphate proteoglycans in the liver tumour microenvironment (TME) are key regulators of cell signalling, modulated by sulfatase-2 (SULF2). SULF2 overexpression occurs in hepatocellular carcinoma (HCC). Our aims were to define the nature and impact of SULF2 in the HCC TME. Methods: In liver biopsies from 60 patients with HCC, expression and localization of SULF2 were analysed associated with clinical parameters and outcome. Functional and mechanistic impacts were assessed with immunohistochemistry (IHC), in silico using The Cancer Genome Atlas (TGCA), in primary isolated cancer activated fibroblasts, in monocultures, in 3D spheroids, and in an independent cohort of 20 patients referred for sorafenib. IHC targets included αSMA, glypican-3, β-catenin, RelA-P-ser536, CD4, CD8, CD66b, CD45, CD68, and CD163. SULF2 impact of peripheral blood mononuclear cells was assessed by migration assays, with characterization of immune cell phenotype using fluorescent activated cell sorting. Results: We report that while SULF2 was expressed in tumour cells in 15% (9/60) of cases, associated with advanced tumour stage and type 2 diabetes, SULF2 was more commonly expressed in cancer-associated fibroblasts (CAFs) (52%) and independently associated with shorter survival (7.2 vs. 29.2 months, p = 0.003). Stromal SULF2 modulated glypican-3/β-catenin signalling in vitro, although in vivo associations suggested additional mechanisms underlying the CAF-SULF2 impact on prognosis. Stromal SULF2 was released by CAFS isolated from human HCC. It was induced by TGFβ1, promoted HCC proliferation and sorafenib resistance, with CAF-SULF2 linked to TGFβ1 and immune exhaustion in TGCA HCC patients. Autocrine activation of PDGFRβ/STAT3 signalling was evident in stromal cells, with the release of the potent monocyte/macrophage chemoattractant CCL2 in vitro. In human PBMCs, SULF2 preferentially induced the migration of macrophage precursors (monocytes), inducing a phenotypic change consistent with immune exhaustion. In human HCC tissues, CAF-SULF2 was associated with increased macrophage recruitment, with tumouroid studies showing stromal-derived SULF2-induced paracrine activation of the IKKβ/NF-κB pathway, tumour cell proliferation, invasion, and sorafenib resistance. Conclusion: SULF2 derived from CAFs modulates glypican-3/β-catenin signalling but also the HCC immune TME, associated with tumour progression and therapy resistance via activation of the TAK1/IKKβ/NF-κB pathway. It is an attractive target for combination therapies for patients with HCC. © 202
Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall
This paper reports the impact on confinement and power load of the high-shape
2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing
components to an all metal wall. In preparation to this change, systematic
studies of power load reduction and impact on confinement as a result of
fuelling in combination with nitrogen seeding were carried out in JET-C and are
compared to their counterpart in JET with a metallic wall. An unexpected and
significant change is reported on the decrease of the pedestal confinement but
is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
Impact of nitrogen seeding on carbon erosion in the JET divertor
Nitrogen has been introduced in H-mode plasmas in JET in order to study its radiation cooling capability and impact on the erosion of divertor plasma-facing components made of carbon-fiber composites (CFC). Experiments in the ionizing plasma regime with low nitrogen injection show a reduction of the total carbon erosion in the divertor measured with the aid of optical spectroscopy on C(+). Though chemical sputtering by nitrogen takes place, identified by the appearance of CN B-X band emission, the additional carbon source is overcompensated by a reduction of regular sputtering by deuterium bombardment. Moderate plasma cooling associated with reduction of the sputtering yield and dilution of the CFC surface by nitrogen can be attributed to the favorable reduction of the carbon source
Relevance of collisionality in the transport model assumptions for divertor detachment multi-fluid modelling on JET
A revised formulation of the perpendicular diffusive transport model in 2D multi-fluid edge codes is proposed. Based on theoretical predictions and experimental observations a dependence on collisionality is introduced into the transport model of EDGE2D-EIRENE. The impact on time-dependent JET gas fuelled ramp-up scenario modelling of the full transient from attached divertor into the high-recycling regime, following a target flux roll over into divertor detachment, ultimately ending in a density limit is presented. A strong dependence on divertor geometry is observed which can mask features of the new transport model: a smoothly decaying target recycling flux roll over, an asymmetric drop of temperature and pressure along the field lines as well as macroscopic power dependent plasma oscillations near the density limit which had been previously observed also experimentally. The latter effect is strongest for scenarios with strike points on vertical targets and vanishes in case of asymmetric divertor configurations. (C) 2011 EURATOM. Published by Elsevier B.V. All rights reserved
- …