266 research outputs found
Structural Changes in the Hungarian Economy and Foreign Trade in 1993–1998
In this article, the authors give a rich-in-data account of Hungary's structural transition to a market economy between 1993 and 1998. Although the availability of statistics also puts constraint on which period to study, these years may as well be later termed the first phase of post-socialist transition. The article has three main parts. In the first, structural changes of the whole economy are presented; the structural shifts in output, value added, and investments are analysed. The diffusion of private ownership and foreign capital and the process of decentralisation and concentration are also discussed. In the second part, the manufacturing industries are in focus. With an interesting analytical tool – the growth matrix – the authors present a possible approach of studying sectoral development. By distinguishing the factor needs of the manufacturing industries, the factor intensities of production are also easy to understand and yet reasonable for studying the adjustment to modernisation trends. In the third part, the structural changes of foreign trade are shown: export orientation, import dependency, the relationship between export and technology are the main concerns of analysis. The impact of FDI on the manufacturing industries' foreign trade and performance close the third part of the article
Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNF alpha
L19-IL2 and L19TNF are fusion proteins composed of L19(scFv), specific for the angiogenesis-associated ED-B containing fibronectin isoform and IL-2 or TNF. Because of the tumor targeting properties of L19, IL-2 and TNF concentrate at therapeutic doses at the tumor vascular level. To evaluate the therapeutic effects of L19-IL2 and L19mTNF in neuroblastoma (NB)-bearing mice, A/J mice bearing Neuro2A or NIE115 NB were systemically treated with L19-IL2 and L19mTNF, alone or in combination protocols. Seventy percent of Neuro2A- and 30% of NIE115-bearing mice were cured by the combined treatment with L19-IL2 and L19mTNF, and further rejected a homologous tumor challenge, indicating specific antitumor immune memory. The immunological bases of tumor cure and rejection were studied. A highly efficient priming of CD4+ T helper cells and CD8+ CTL effectors was generated, paralleled by massive infiltration in the tumor tissue of CD4+ and CD8+ T cells at day 16 after tumor cell implantation, when, after therapy, tumor volume was drastically reduced and tumor necrosis reached about 80%. The curative treatment resulted in a long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2 type of response. Concluding, L19-IL2 and L19mTNF efficiently cooperate in determining a high percentage of NB cure that, in our experimental models, is strongly associated to the generation of adaptive immunity involving CD4+ and CD8+ T cells
vandetanib improves anti tumor effects of l19mtnfα in xenograft models of esophageal cancer
Purpose: Targeting the tumor vasculature by vascular disrupting agents (VDAs) has shown therapeutic activity in mouse models. In most cases, however, VDA efficacy is substantially compromised by the inability of these drugs to completely kill tumor cells located at the periphery of the tumor mass. In this study, we investigated anti-tumor effects of L19mTNFα, a fusion protein composed of L19 (scFv), specific for the angiogenesis-associated ED-B containing fibronectin isoform, and murine TNFα, in xenograft models of esophageal cancer. Experimental design: We evaluated ED-B expression in esophageal cancer samples. Subsequently, we generated subcutaneous xenografts from primary tumors, treated them with the L19mTNFα scFv, and determined effects on tumor vasculature, viability and proliferation, and VEGF expression and infiltration by hematopoietic cells. To overcome tumor resistance, L19mTNFα scFv was combined with vandetanib, a tyrosine kinase inhibitor of VEGF receptor, epidermal growth factor receptor, and RET signaling. Results: ED-B was broadly expressed by esophageal cancer cell lines, as well as xenografts and primary surgical samples of esophageal cancer. Administration of L19mTNFα acutely damaged tumor vasculature and increased necrosis, indicating a VDA-like activity of this immunoconjugate. This event was followed, however, by rapid tumor growth recovery associated with increased expression of VEGF and recruitment of CD11b+Gr1+ myeloid cells into tumors. Combination of L19mTNFα with vandetanib severely impaired vascular functions in tumors, leading to a reduction of cell proliferation and increased necrosis, without apparent signs of toxicity. Conclusion: These findings indicate that a combination of vascular damaging agents with anti-angiogenic drugs could represent a promising therapeutic strategy for esophageal cancer. Clin Cancer Res; 17(3); 447–58. ©2010 AACR
BoBafit: A copy number clustering tool designed to refit and recalibrate the baseline region of tumors’ profiles
Human cancer arises from a population of cells that have acquired a wide range of genetic alterations, most of which are targets of therapeutic treatments or are used as prognostic factors for patient's risk stratification. Among these, copy number alterations (CNAs) are quite frequent. Currently, several molecular biology technologies, such as microarrays, NGS and single-cell approaches are used to define the genomic profile of tumor samples. Output data need to be analyzed with bioinformatic approaches and particularly by employing computational algorithms. Molecular biology tools estimate the baseline region by comparing either the mean probe signals, or the number of reads to the reference genome. However, when tumors display complex karyotypes, this type of approach could fail the baseline region estimation and consequently cause errors in the CNAs call. To overcome this issue, we designed an R-package, BoBafit, able to check and, eventually, to adjust the baseline region, according to both the tumor-specific alterations’ context and the sample-specific clustered genomic lesions. Several databases have been chosen to set up and validate the designed package, thus demonstrating the potential of BoBafit to adjust copy number (CN) data from different tumors and analysis techniques. Relevantly, the analysis highlighted that up to 25% of samples need a baseline region adjustment and a redefinition of CNAs calls, thus causing a change in the prognostic risk classification of the patients. We support the implementation of BoBafit within CN analysis bioinformatics pipelines to ensure a correct patient's stratification in risk categories, regardless of the tumor type
High levels of CRBN isoform lacking IMiDs binding domain predicts for a worse response to IMiDs-based upfront therapy in newly diagnosed myeloma patients
In recent years, the immunoderivative (IMiD) agents have been extensively used for the treatment of multiple myeloma (MM). IMiDs and their newer derivatives CRBN E3 ligase modulator bind the E3 ligase substrate recognition adapter protein cereblon (CRBN), which has been recognized as one of the IMiDs’ direct target proteins, and it is essential for the therapeutic effect of these agents. High expression of CRBN was associated with improved clinical response in patients with MM treated with IMiDs, further confirming that the expression of IMiDs’ direct target protein CRBN is required for the anti-MM activity. CRBN’s central role as a target of IMiDs suggests potential utility as a predictive biomarker of response or resistance to IMiDs therapy. Additionally, the presence of alternatively spliced variants of CRBN in MM cells, especially those lacking the drug-binding domain for IMiDs, raise questions concerning their potential biological function, making difficult the transcript measurement, which leads to inaccurate overestimation of full-length CRBN transcripts. In sight of this, in the present study, we evaluated the CRBN expression, both full-length and spliced isoforms, by using real-time assay data from 87 patients and RNA sequencing data from 50 patients (n = 137 newly diagnosed MM patients), aiming at defining CRBN’s role as a predictive biomarker for response to IMiDs-based induction therapy. We found that the expression level of the spliced isoform tends to be higher in not-responding patients, confirming that the presence of a more CRBN spliced transcript predicts for lack of IMiDs response
Multi-dimensional scaling techniques unveiled gain1q&loss13q co-occurrence in Multiple Myeloma patients with specific genomic, transcriptional and adverse clinical features
The complexity of Multiple Myeloma (MM) is driven by several genomic aberrations, interacting with disease-related and/or -unrelated factors and conditioning patients’ clinical outcome. Patient’s prognosis is hardly predictable, as commonly employed MM risk models do not precisely partition high- from low-risk patients, preventing the reliable recognition of early relapsing/refractory patients. By a dimensionality reduction approach, here we dissect the genomic landscape of a large cohort of newly diagnosed MM patients, modelling all the possible interactions between any MM chromosomal alterations. We highlight the presence of a distinguished cluster of patients in the low-dimensionality space, with unfavorable clinical behavior, whose biology was driven by the co-occurrence of chromosomes 1q CN gain and 13 CN loss. Presence or absence of these alterations define MM patients overexpressing either CCND2 or CCND1, fostering the implementation of biology-based patients’ classification models to describe the different MM clinical behaviors
Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients
DNA microarrays and RNA-based sequencing approaches are considered important discovery tools in clinical medicine. However, cross-platform reproducibility studies undertaken so far have highlighted that microarrays are not able to accurately measure gene expression, particularly when they are expressed at low levels. Here, we consider the employment of a digital PCR assay (ddPCR) to validate a gene signature previously identified by gene expression profile. This signature included ten Hedgehog (HH) pathways' genes able to stratify multiple myeloma (MM) patients according to their self-renewal status. Results show that the designed assay is able to validate gene expression data, both in a retrospective as well as in a prospective cohort. In addition, the plasma cells' differentiation status determined by ddPCR was further confirmed by other techniques, such as flow cytometry, allowing the identification of patients with immature plasma cells' phenotype (i.e., expressing CD19+/CD81+ markers) upregulating HH genes, as compared to others, whose plasma cells lose the expression of these markers and were more differentiated. To our knowledge, this is the first technical report of gene expression data validation by ddPCR instead of classical qPCR. This approach permitted the identification of a Maturation Index through the integration of molecular and phenotypic data, able to possibly define upfront the differentiation status of MM patients that would be clinically relevant in the future
Long-term follow-up of patients with relapsing multiple sclerosis from the CLARITY/CLARITY Extension cohort of CLASSIC-MS : an ambispective study
Background: CLASSIC-MS evaluated the long-term efficacy of cladribine tablets in patients with relapsing multiple sclerosis. Objective: Report long-term mobility and disability beyond treatment courses received in CLARITY/CLARITY Extension. Methods: This analysis represents CLASSIC-MS patients who participated in CLARITY with/without participation in CLARITY Extension, and received ⩾1 course of cladribine tablets or placebo (N = 435). Primary objective includes evaluation of long-term mobility (no wheelchair use in the 3 months prior to first visit in CLASSIC-MS and not bedridden at any time since last parent study dose (LPSD), i.e. Expanded Disability Status Scale (EDSS) score <7). Secondary objective includes long-term disability status (no use of an ambulatory device (EDSS < 6) at any time since LPSD). Results: At CLASSIC-MS baseline, mean ± standard deviation EDSS score was 3.9 ± 2.1 and the median time since LPSD was 10.9 (range = 9.3-14.9) years. Cladribine tablets-exposed population: 90.6% (N = 394), including 160 patients who received a cumulative dose of 3.5 mg/kg over 2 years. Patients not using a wheelchair and not bedridden: exposed, 90.0%; unexposed, 77.8%. Patients with no use of an ambulatory device: exposed, 81.2%; unexposed, 75.6%. Conclusion: With a median 10.9 years' follow-up after CLARITY/CLARITY Extension, findings suggest the sustained long-term mobility and disability benefits of cladribine tablets
- …