61 research outputs found
Fungal and Bacterial Loads: Noninvasive Inflammatory Bowel Disease Biomarkers for the Clinical Setting
Malaltia inflamatòria intestinal; Càrrega microbiana; PrediccióEnfermedad inflamatoria intestinal; Carga microbiana; PredicciónInflammatory bowel disease; Microbial load; PredictionMicrobiome sequence data have been used to characterize Crohn's disease (CD) and ulcerative colitis (UC). Based on these data, we have previously identified microbiomarkers at the genus level to predict CD and CD relapse. However, microbial load was underexplored as a potential biomarker in inflammatory bowel disease (IBD). Here, we sought to study the use of fungal and bacterial loads as biomarkers to detect both CD and UC and CD and UC relapse. We analyzed the fecal fungal and bacterial loads of 294 stool samples obtained from 206 participants using real-time PCR amplification of the ITS2 region and the 16S rRNA gene, respectively. We combined the microbial data with demographic and standard laboratory data to diagnose ileal or ileocolonic CD and UC and predict disease relapse using the random forest algorithm. Fungal and bacterial loads were significantly different between healthy relatives of IBD patients and nonrelated healthy controls, between CD and UC patients in endoscopic remission, and between UC patients in relapse and non-UC individuals. Microbial load data combined with demographic and standard laboratory data improved the performance of the random forest models by 18%, reaching an average area under the receiver operating characteristic curve (AUC) of 0.842 (95% confidence interval [CI], 0.65 to 0.98), for IBD diagnosis and enhanced CD and UC discrimination and CD and UC relapse prediction. Our findings show that fecal fungal and bacterial loads could provide physicians with a noninvasive tool to discriminate disease subtypes or to predict disease flare in the clinical setting.
IMPORTANCE Next-generation sequence data analysis has allowed a better understanding of the pathophysiology of IBD, relating microbiome composition and functions to the disease. Microbiome composition profiling may provide efficient diagnosis and prognosis tools in IBD. However, the bacterial and fungal loads of the fecal microbiota are underexplored as potential biomarkers of IBD. Ulcerative colitis (UC) patients have higher fecal fungal and bacterial loads than patients with ileal or ileocolonic CD. CD patients who relapsed harbor more-unstable fungal and bacterial loads than those of relapsed UC patients. Fecal fungal and bacterial load data improved prediction performance by 18% for IBD diagnosis based solely on clinical data and enhanced CD and UC discrimination and prediction of CD and UC relapse. Combined with existing laboratory biomarkers such as fecal calprotectin and C-reactive protein (CRP), microbial loads may improve the diagnostic accuracy of IBD and of ileal CD and UC disease activity and prediction of UC and ileal CD clinical relapse.This work was funded by Instituto de Salud Carlos III, grant PI17/00614, cofinanced by the European Regional Development Fund (ERDF) and by the PERIS (SLT002/16). F. Casellas has received research funding from AbbVie, Ferring, MSD, Shire, and Zambon and speaker fees from AbbVie, Chiesi, Ferring, Gebro, MSD, Shire, Takeda, and Zambon. S. Vermeire has received grant support from AbbVie, MSD, Pfizer, J&J, and Takeda; received speaker fees from AbbVie, MSD, Takeda, Ferring, Dr. Falk Pharma, Hospira, Pfizer Inc., and Tillots; and served as a consultant for AbbVie, MSD, Takeda, Ferring, Genentech/Roche, Robarts clinical trials, Gilead, Celgene, Prometheus, Avaxia, Prodigest, Shire, Pfizer Inc, Galapagos, Mundipharma, Hospira, Celgene, Second Genome, and Janssen. C. Manichanh has received financial support for research from Danone
Bifidobacterium infantis strains with and without a combination of Oligofructose and Inulin (OFI) attenuate inflammation in DSS-induced colitis in rats
BACKGROUND: Pathogenesis of inflammatory bowel disease is thought to be through different factors and there is a relationship between the gut flora and the risk of its development. Probiotics can manipulate the microflora in chronic inflammation and may be effective in treating inflammation. Bifidobacterium are saccharolytic and their growth in the gut can be promoted by non-absorbable carbohydrates and its increase in the colon appears to be of benefit. METHODS: Oligofructose and inulin (OFI) alone and the two B. infantis DSM 15158 and DSM 15159 with and without OFI, were fed to Sprague-Dawley rats for 7 days prior to colitis induction and administrations continued for another 7 days with the DSS. Colitis severity assessed using a Disease Activity Index. Samples were collected 7 days after colitis induction, for intestinal bacterial flora, bacterial translocation, short chain fatty acids (SCFAs), myeloperoxidase (MPO), cytokines (IL-1β, TNF-α, IL-10 and TGF-β) and malondialdehyde (MDA). RESULTS: OFI alone or the B. infantis strains with and without OFI improved significantly the DAI and decreased colonic MPO activity. Colonic tissue IL-1β decreased significantly in all treated groups except B. infantis DSM 15158. MDA decreased significantly in B. infantis DSM 15159 with and without OFI compared to colitis control. Succinic acid increased significantly in OFI group with and without DSM 15159 compared to all groups. Sum values of propionic, succinic acid and butyric acid increased significantly in all groups compare to the colitis control. Bacterial translocation to mesenteric lymph nodes decreased significantly in all groups compared to colitis control. Translocation to the liver decreased significantly in all groups compare to the colitis control and OFI + B. infantis DSM 15158 groups. CONCLUSION: Administrations of OFI and Bifidobacterium improve DSS-induced acute colitis and have an anti-inflammatory effect. Major differences in effect were observed between the two B. infantis strains as indicated in MDA and succinic acid concentration as well as bacterial translocation rate in synbiotic combinations
Mechanisms Involved in Alleviation of Intestinal Inflammation by Bifidobacterium Breve Soluble Factors
Objectives: Soluble factors released by Bifidobacterium breve C50 (Bb) alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM) and other Gram(+) commensal bacteria to dampen inflammatory chemokine secretion. Methods: TNFa-induced chemokine (CXCL8) secretion and alteration of NF-kB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. Results: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkB-a molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. Conclusions: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylation
CD19 LYMPHOCYTE PROLIFERATION INDUCED BY Bifidobacterium animalis subsp. lactis IN C57BL/6 MICE EXPERIMENTALLY INFECTED WITH Toxoplasma gondii
Toxoplasmosis is frequently acquired through the oral route by the ingestion of cysts or oocysts of Toxoplasma gondii. Once ingested, the parasites penetrate the intestinal epithelial cells and rapidly disseminate to all organs in the host. During T. gondii infection, the intestinal microbiota plays an important role in stimulating a protective immune response against the parasite. In this sense the use of probiotics is worthy of note since they are live microorganisms that have beneficial effects on the host through stimulation of the immune response that can be important in the control of T. gondii proliferation and dissemination in the host. In the present study, the action of the probiotic Bifidobacterium animalis subsp. lactis was investigated in C57BL/6 mice infected with oocysts of ME49 strain of T. gondii. The probiotic had an immunomodulatory action, inducing CD19 lymphocyte proliferation and consequently increasing anti-T. gondii antibody level.Bifidobacterium animalis subsp. lactisprovided protection in supplemented mice, compared to the control group. In addition, supplemented animals had milder inflammatory process in the small intestine, indicating that the probiotic protects the intestinal mucosa during infection with T. gondii. It was concluded that the probioticB. animalis subsp. lactis induces humoral immune response capable of providing protection against T. gondii infection
Imaging of spontaneous emission from 980 nm tapered lasers with windowed N-contacts
Experimental measurements of the spatial distribution of the spontaneous
emission produced inside the cavity of a 4° 980 nm tapered laser
are
presented and compared with the results of a 2.5 D half-space, hot-cavity
simulation. A custom device with a windowed n-contact was designed and
fabricated for this work. The effectiveness of this windowed contact was
investigated and appears to be satisfactory. The measurement system for
photo- and electroluminescence microscopy imaging was quantitatively
calibrated with an error of < ±15%. Good agreement between the
experimental and simulated results are presented, with an error of
~ 6%
in the carrier density at the output facet
Differential Toll-like receptor recognition and induction of cytokine profile by Bifidobacterium breve and Lactobacillus strains of probiotics
Contains fulltext :
97823.pdf (publisher's version ) (Open Access)The use of probiotics as a food supplement has gained tremendous interest in the last few years as beneficial effects were reported in gut homeostasis and nutrient absorption but also in immunocompromised patients, supporting protection from colonization or infection with pathogenic bacteria or fungi. As a treatment approach for inflammatory bowel diseases, a suitable probiotic strain would ideally be one with a low immunogenic potential. Insight into the immunogenicities and types of T-cell responses induced by potentially probiotic strains allows a more rational selection of a particular strain. In the present study, the bacterial strains Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1), and Lactobacillus casei (DN-114 001) were compared concerning their capacity to induce inflammatory responses in terms of cytokine production by human and mouse primary immune cells. It was demonstrated that the B. breve strain induced lower levels of the proinflammatory cytokine gamma interferon (IFN-gamma) than the tested L. rhamnosus and L. casei strains. Both B. breve and lactobacilli induced cytokines in a Toll-like receptor 9 (TLR9)-dependent manner, while the lower inflammatory profile of B. breve was due to inhibitory effects of TLR2. No role for TLR4, NOD2, and C-type lectin receptors was apparent. In conclusion, TLR signaling is involved in the differentiation of inflammatory responses between probiotic strains used as food supplements
Topographical body fat distribution links to amino acid and lipid metabolism in healthy non-obese women.
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics
- …