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Abstract

Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the
ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of
cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25–45 y, BMI: 28–40 kg/m2) under healthy
clinical conditions and monitored over a 2 weeks period we examined the relationships between different body
composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics
analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and
abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and
VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The
integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl
and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat
adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O
44:6, PC-O 44:4, PC-O 42:4, PC-O 40:4, and PC-O 40:3 lipid species. Unexpectedly, the visceral fat associated inflammatory
profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat
associated amino acid and lipid signature is proposed to be further validated for future patient stratification and
cardiometabolic health diagnostics.
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Introduction

Overweight and obesity pandemic has made the discovery of

their associated genome and metabolome one of the greatest

public health challenges [1,2]. Obesity, in particular visceral

adiposity, associates with inflammation and insulin resistance

which ultimately link to risks of type 2 diabetes and cardiometa-

bolic disorders. The mechanisms leading to obesity related diseases

(ORD) remain yet undefined but may involve platelet and vascular

impairments [3,4]. Moreover, visceral adiposity, also named

central adiposity or obesity, is increasingly recognized as a key

condition for the development of ORD [5–10].

The etiology and individual predisposition to visceral adiposity

remain unclear. Over the last decades, both genetic and

environmental promoters were investigated [11,12], including

genes and transcription factors associated with fat storage and

obesity [12–16], genetic inheritability [17] and gut microbiota

influence [18]. Nevertheless, similar obesogenic and diabetogenic

conditions do not necessarily lead to a universal response to

adiposity-associated cardiometabolic risks [19,20]. Indeed, indi-

viduals with normal weight (body mass index, BMI,25) can

express cardiometabolic abnormalities [19] putatively due to

differences in body composition with a key role of sub-cutaneous

versus visceral fat distribution.

From a diagnostic view, various indexes of visceral adiposity,

combining anthropometric measures were proposed, including

waist to hip ratio, (e.g. .0.9 for men and .0.85 for women) [21].

However, anthropometric-based stratification is prone to mea-

surement errors. They also show limitations when applied across

different populations (children versus adults) and ethnicities as

universal health standards cutoffs. Moreover, these tools are

insensitive to discerning the different sub-conditions of visceral

adiposity and their associated metabolic risk factors. visceral

adiposity includes indeed a complex topographical fat deposition,
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namely mesenteric and epicardial adipose tissues, and peripheric

depots around organs like stomach, liver and kidneys, which

associate with metabolic homeostatic loss [22]. The complex

visceral fat compartment exhibits, beyond its role in dietary fat

storage, signaling metabolic functions that interplay with endo-

crine and immune systems [12]. Modern imaging technologies

based on magnetic resonance (MRI) and computed tomography

(CT) can generate accurate regio-specific quantification of visceral

fat depots. Nevertheless, it is unlikely that these imaging platforms

can become universal tools for population screening and

monitoring due to cost and access limitations.

In such a context, the identification of minimally-invasive, fast

and reliable biomarkers to be used for effective and individual

therapeutic solutions for visceral adiposity management and

monitoring has become a key milestone to address the burden of

ORD with cost effective diagnostics at epidemiological level. The

development of such biomarkers may benefit from metabonomics,

which is well suited to delineate metabolic phenotype, encapsu-

lating the influence of various environment, drugs, dietary,

lifestyle, genetics, and microbiome factors [23–25]. Recent

applications have demonstrated the feasibility of associating

specific metabolite profiles to body fat distribution [26,27], and

it is envisioned that metabonomics could deliver direct or indirect

metabolic information that may generate new mechanistic

knowledge of complex physiological processes.

We sought to identify visceral adiposity specific metabolic

signature using a combination of holistic nuclear magnetic

resonance (NMR) and targeted quantitative mass spectrometry

(MS) analysis of urine and plasma from a well clinically

characterized cohort of 40 healthy obese women. Subject

characterization was based on clinical chemistry and body imaging

including visceral adipose tissue (VAT) and subcutaneous adipose

tissue (SAT) quantitation using gold standard CT completed with

whole body Dual energy X-ray Absorptiometry (DXA) [28] scans.

The VAT/SAT and VAT/total abdominal fat ratios, considered

as cardiometabolic health indicators, were calculated to probe for

metabolic-phenotype correlations [29]. In the present study, we

assess how topography of visceral adiposity links to body

composition parameters and metabolic status of healthy obese

women.

Materials and Methods

Ethics Statement
This work was approved by the Ethical Committee of Lausanne

University School Medicine (Lausanne, Switzerland). All partic-

ipants gave written informed consent in French or in English as

described in the consent procedure of the study protocol approved

by the Ethics committee. The clinical study is registered at

ClinicalTrials.gov with the identifier NCT01726647.

Participants and Experimental Design
The observational study was conducted on 40 healthy obese

Caucasian women at the out-patient obesity clinic of the

University Hospital of Lausanne (CHUV), Switzerland. The

participants had a BMI between 28 and 40, aged between 25

and 45 years old, showed no metabolic disease traits, and gave

written informed consent. Additional exclusion criteria were

diabetes, pregnancy, antibiotic therapy within 1 month prior to

the beginning of the study, any therapy (contraception apart)

within the run-in period of one week before the visit day, and

eating disorders. In the current cohort no subjects suffered from

hypertension, glucose intolerance, polycystic ovary syndrome,

thyroid dysfunction and adrenal disorders. Subjects having

recently undergone a weight loss of more than 3 kilos during

the last 3 months were also excluded. During the conduction of

the study, participants were asked to limit consumption of

special foods (spices, supplements, etc.) for one week before the

first visit day and to record their daily food intake. Fourteen

subjects out of the 40 were taking contraception, and the

subjects followed a randomized distribution across the spectrum

of visceral fat adiposity. All the subjects showed normal

menstrual cycle and took part in the study during the follicular

phase of their menstrual cycle to minimize the confounding

effects related to the hormonal changes. At a baseline (V0),

subjects underwent a standard medical visit, where overnight

fasting blood plasma samples were collected. One week later

(V1), body composition was measured using CT (at CHUV)

and iDXA (at the metabolic unit, Nestlé Research Center,

Lausanne, Switzerland). Twenty-four-hours urine samples were

collected, resting energy expenditure was measured by indirect

calorimetry and a standard Oral Glucose Tolerance Test

(OGTT, 75 g glucose) was conducted at V1. Glucose and

insulin concentrations were measured at 215 min (t0), +30 min

(t30), +60 min (t60), +90 min (t90), +120 min (t120) after

glucose intake. One week later (V2), the subjects were asked

to consume a standardized lunch and dinner to smooth inter-

individual differences due to differences in diets. At this time

point, overnight fasting plasma and 24-hours urine samples were

collected, and fasting plasma samples again on the next day

(V3).

Anthropometric Measurements
Body weight was measured with a DetectoH scale with a

precision of 0.2 kg; height was measured with a stadiometer with a

precision of 0.5 cm. Body mass index (BMI) was calculated as

weight/height squared (kg/m2). Waist and hip circumferences

were taken respectively at the smallest standing horizontal

circumference between the ribs and the iliac crest and in a

horizontal plane around the maximum circumference of the

buttocks, using a TEC anthropometric tape (Rollfix, Hoechstmass,

Germany). The measurement was made to the nearest 0.1 cm at

normal expiration. Three measurements were taken with the

criterion that difference between the measurements had to be less

than 2 cm. Additional measurements were taken when needed

until this criterion was fulfilled.

Body Composition Assessment and Energy Expenditure
Assessments

Full body scan was performed to determine both abdominal fat

distribution and total body composition. Total body scans were

made on a GE Lunar iDXA system (software version: enCORE

version 12.10.113) with scan mode automatically determined by

the device and used the previously reported procedure [28]. For

the DXA measurement, all subjects were wearing a hospital gown

and had all metal artefacts removed. The iDXA unit was

calibrated daily using the GE Lunar calibration phantom. A

trained operator performed all scans following the operator’s

manual for patient positioning and data acquisition. During the

one-hour appointment, total body scans of each subject were

performed twice with repositioning between scans. Scans were

analyzed with the enCORE software (version 14.00.207). The

ROIs were automatically determined by the enCORE software

(Auto ROI) for total body, arms, legs, trunk, android, and gynoid

regions. An experienced DXA operator also verified and, when

indicated, repositioned the ROI placements (Expert ROI). In

addition to iDXA scan, waist and hip measurements were

performed.

Metabolic Signatures of Visceral Adiposity
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The CT scan measures of the abdominal region, for the

quantification of intra-peritoneal and sub-cutaneous fat, were

performed on 64 multi-detector CT scanner (VCT Lightspeed,

GE Medical Systems, Milwaukee, USA). Subjects lied in the

supine position with their arms above their head and legs elevated

with a cushion. A single scan (10 mm) of the abdomen is acquired

at the level of L4–L5 vertebrae and analyzed for a cross-sectional

area of adipose tissue, expressed in square centimeters. The

following acquisition parameters were used: 120 Kv, 100–200 mA

with z-axis dose modulation and a field of view 500 mm. Axial

transverse images of 5 mm slice thickness are reconstructed using a

standard kernel. The quantification process uses a semi interactive

commercially available algorithm for segmentation of subcutane-

ous and intra-abdominal fat on the Advantage Window worksta-

tion (GE Medical Systems). Resting metabolic rate was measured

by using open-circuit indirect calorimetry, with a Deltatrak II

(Datex Instruments).

Blood Pressure and Clinical Chemistry
Blood pressure was measured in the lying position using a

digital pressure monitor (HEM-907, Omron). Mean arterial

blood pressure (MAP) was also calculated from systolic (SYS)

and diastolic (DIA) arterial blood pressure: MAP = 1/3 SYS +2/

3 DIA). Blood samples were collected in the morning after an

overnight fast. Glucose (Ecoline 100 Merck, KgaA, Darmstadt,

Germany), total cholesterol (Roche CHOD-PAP, Roche Mo-

lecular Biochemicals Systems, GmbH, Mannheim, Germany),

high-density lipoprotein cholesterol (HDL-C plus, second

generation, Roche Diagnostic GmbH, Mannheim, Germany)

and triglycerides (TG GPO-PAP, Roche Diagnostic) were

measured using an automatic Hitachi 917 Roche apparatus.

Low-density lipoprotein cholesterol was then calculated by the

Friedwald’s formula. Plasma insulin was assayed by specific

radioimmunoassay (Aldatis Insulin, code 10624, Casalecchio di

Reno, BO, Italy). Urea, creatinine, sodium and potassium

concentrations, ALAT, ASAT, cGT, were measured by SSCC

(Société Suisse de Chimie Clinique) 37uC method with kit

Roche and kit BioMérieux with automatic Hitachi 917 Roche,

according to routine analytic methods. Intra-assay precision

error (CV) for these measurements was 1.0–3.1%. All

biochemical analyses were carried out by certified laboratories

(ISO/CEI 17025); they were run in duplicate or triplicate

samples, after having been previously tested in a healthy

population. Insulin resistance status was assessed as homeostasis

model assessment of insulin resistance (HOMA-IR): insulin (mU/

mL)6glucose (mmol/L)/22.5. Finally, free fatty acids were

analyzed by WAKO NEFA-HR (300 mL plasma, EDTA) using

Siemens XPAND DIMENSION (WA2 434–91795, WA2 436–

91995, USA).

Metabonomics Analysis
Targeted LC-MS/MS metabonomic approach using the

Biocrates Life Sciences AbsoluteIDQTM kit was applied to plasma

samples as previously published [30]. Briefly, well plate prepara-

tion and sample application and extraction were carried out

according to the manufacturer’s instructions. A final volume of

10 ml of plasma was loaded onto the provided 96-well plate. Liquid

chromatography was realized on a Dionex Ultimate 3000 ultra

high pressure liquid chromatography (UHPLC) system (Dionex

AG, Olten, Switzerland) coupled to a 3200 Q TRAP mass

spectrometer (AB Sciex; Foster City, CA, USA) fitted with a

TurboV ion source operating in electrospray ionization (ESI)

mode. Sample extracts (20 ml) were injected twice (in positive and

negative ESI modes) via direct infusion using a gradient flow rate

of 0–2.4 min: 30 ml/min, 2.4–2.8 min: 200 ml/min, 2.9–3 min:

30 ml/min. MS source parameters were set at: desolvation

temperature (TEM): 200uC, high voltage: 24500 V (ESI 2),

5500 V (ESI +), curtain (CUR) and nebuliser (GS1 and GS2)

gases: nitrogen; 20, 40, and 50 psi; respectively, nitrogen collision

gas pressure: 5 mTorr. MS/MS acquisition was realised in

scheduled reaction monitoring (SRM) mode with optimised

declustering potential values for the 163 metabolites screened in

the assay. Raw data files (Analyst software, version 1.5.1; AB

Sciex, Foster City, CA, USA) were imported into the provided

analysis software MetIQ to calculate metabolite concentrations.

List of all detectable metabolites is available from Biocrates Life

Sciences, Austria (http://biocrates.com). See Text S1 for more

details. Samples were also subjected to analysis for inflammation

markers quantification by UPLC-ESI-MS/MS using isotope

dilution technique. See Text S2 for more details.

Heparinized blood plasma samples (400 mL) were introduced

into 5 mm NMR tubes with 200 mL of deuterated phosphate

buffer solution (KH2PO4 with a final concentration of 0.2 M).

Deuterium was employed as locking substance. Twenty-four-hours

urine samples (400 mL) were introduced into 5 mm NMR tubes

with 200 mL of deuterated phosphate buffer solution (KH2PO4

with a final concentration of 0.2 M, and containing 1 mM of

sodium 3-(trimethylsilyl)-[2,2,3,3-2H4]-1-propionate (TSP). Meta-

bolic profiles were measured on a Bruker Avance III 600 MHz

spectrometer equipped with an inverse 5 mm cryogenic probe at

300 K (Bruker Biospin, Rheinstetten, Germany). See Text S3 for

more details.

Chemometrics
Due to the non-normal distribution of the visceral adiposity, the

following parameters were employed for the subsequent metabo-

nomics analysis: log-transform value of the visceral fat content, of

the intraperitoneal/subcutaneous fat ratio (ratio 1), or of the

intraperitoneal/abdominal fat ratio (ratio 2). The plasma and

urine NMR spectra were converted into 22 K data points over the

range of d 0.2–10.0 ppm using an in-house developed MATLAB

routine excluding the water residue signal between d4.68–

5.10 ppm. Chemical shift intensities were normalized to the sum

of all intensities within the specified range prior to chemometric

analysis for urine and plasma samples. In addition, 24-hours urine

spectral data were also normalized to creatinine values quantified

in parallel using an adapted Jaffe method.

Chemometric analysis was performed using the software

package SIMCA-P+ (version 12.0, Umetrics AB, Umeå, Sweden)

and in-house developed MATLAB (The MathWorks Inc., Natick,

MA, USA) routines. In order to detect the presence of similarities

between metabolic profiles, Principal Component Analysis (PCA)

[31], Projection to Latent Structure (PLS) [32], and the

Orthogonal Projection to Latent Structures (O-PLS) [33] were

used. Analyses were conducted to investigate relationships between

body composition, OGTT response and metabolic profiles. Seven-

fold cross validation was used to assess the validity of the model

[34]. The classification accuracy of the O-PLS-DA model was

established from the predicted samples in the 7-fold cross-

validation cycle. The modeling was also tested for assessing

inter-days metabolic variations, by considering each visit sepa-

rately.

In addition, targeted MS data were analyzed by Random

Forests (RFTM) using the package ‘randomForest’ [35]. In

particular, the selection of the most robust markers required

additional multivariate data analyses using RFTM (with 500 trees,

and a random variable sampling at tree split of 5) and the

implemented variable importance features in RFTM (mean

Metabolic Signatures of Visceral Adiposity
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decreases in accuracy/node impurity) to determine variables that

discriminates better subjects according to their visceral fat status

(Q1 versus Q4) as assessed using either value of the intraperitoneal

fat volume, ratio 1 and ratio 2.

Spearman autocorrelation matrices were calculated using R and

corresponding graphs were produced using the package Rgraphviz

v.1.32.0. Univariate significance tests for confirmation were also

performed in R.

Results

Clinical Characteristics of the Obese Cohort
Anthropometric and clinical parameters of the cohort were

measured at visit 2 (V2) and main parameters are shown as per

stratification in four quartiles (Q1–4, n = 10) based on the log10

value of the intraperitoneal fat volume measured using CT (Table

S1), log10 value of intraperitoneal/subcutaneous fat ratio (ratio 1,

Table S2), or log10 value of intraperitoneal/abdominal fat ratio

(ratio 2, Table 1).

Relationships between Visceral Fat Indicators and other
Body Composition Parameters

PCA and a heat map based on the Spearman correlations on

CT scan and DXA data were used to assess the relationships

across the CT and DEXA generated body composition param-

eters (Figure 1, Figure S1). In particular, relationships with the

different indicators of visceral adiposity including IPVF, log10

values of IPVF, ratio 1 and ratio 2, android/gynoid fat ratio were

included. The analysis therefore described how visceral adiposity

relates to region-specific lean, fat and bone distribution across the

40 human subjects according to the type of VAT indicator.

Statistically significant correlations (95% confidence interval) are

shown in Figure 1. The specific relationships between Log10 ratio

1 and the other parameters were further assessed using a

multivariate OPLS model (Figure S2).

Relationships between Visceral Fat Indicators and Clinical
Parameters

PCA and a heat map based on the Spearman correlations

between body composition and main clinical parameters of the 40

human subjects were also employed to probe for relationships with

key physiological endpoints (Figure 2, Figure S3). The specific

Table 1. Descriptive statistics of subjects stratified according to intraperitoneal/abdominal fat ratio.

Factor Q1 Q2 Q3 Q4 Mann-Whitney p value (Q1/Q4)

Log10 Ratio2 20.7±0.05 20.61±0.02 20.52±0.02 20.40±0.06 ,0.0001

IPVF, mL 3065.1±695.5 4223±837.6 5111.2±1036.3 5407±1564.6 0.0002

HOMA-IR 4.24±2.02 4.95±1.49 6.06±1.87 6.12±1.23 0.011

Insulin, (mU/mL) 18.6±9.21 22.12±6.32 24.36±7.22 25.44±4.62 0.014

Glucose, mmol/L 4.9560.35 5.1760.52 5.4160.49 5.3760.5 0.057

TG, mmol/L 1.0460.43 2.2562.1 1.2860.45 1.5260.57 0.093

ALAT/ASAT ratio 0.8660.25 0.9160.21 0.9960.3 1.0860.34 0.120

Age, years 33.964.89 32.863.58 3864.42 37.665.82 0.138

ALAT, U/L 18.466.11 19.265.07 23.568.34 27.1613.28 0.139

HDL, mmol/L 1.5460.43 1.3260.29 1.3860.25 1.3260.24 0.181

GGT, U/L 20611.86 17.566.88 21.164.84 25.44611.26 0.191

Creatinine, mmol/L 65.669.45 65.2611.2 64.7869.28 70.366.53 0.256

HDL/Chol ratio 3.7761.07 4.4261.22 3.9960.97 4.2460.95 0.289

Na, mmol/L 140.461.35 140.861.32 141.561.58 139.961.1 0.328

Waist/Hip ratio 0.860.07 0.8160.06 0.8560.07 0.8460.09 0.351

Urates, mmol/L 275.2641.93 263.22671.45 303.4675.28 285631.7 0.352

Calorimetry, kcal/24 h 13576191.78 14346142.61 14696152.49 14336210.82 0.363

ASAT, U/L 21.463.24 21.464.48 2466.94 24.566.7 0.401

Waist, cm 97.2868.28 103.3968.7 108.72611.71 104.73613.84 0.458

Hip, cm 12265.47 12867.48 127.3466.29 122.2869.65 0.564

NEFAs, mmol/L 544.56201.51 580.66301.38 596.26185.79 585.16188.62 0.664

K, mmol/L 4.0560.18 4.160.18 3.9960.25 4.0460.18 0.876

MAP, mmHg 57.8618.6 71.1619.75 62.4620.97 57.8614.15 0.879

Cholesterol, mmol/L 5.5261.01 5.5860.85 5.3160.68 5.4860.97 0.909

BMI, kg/m2 34.0163.27 36.3463.62 3762.95 34.5964.42 0.939

LDL, mmol/L 3.560.97 3.5660.88 3.3460.61 3.4760.79 1

Key: Qi: data for population quartile i according to intraperitoneal/abdominal fat ratio. BMI = body mass index, HDL-C = high density lipoprotein cholesterol,
homeostasis model assessment of insulin resistance = HOMA-IR, LDL-C = low density lipoprotein cholesterol, TG = triglycerides, MAP = mean arterial blood pressure,
ALAT = alanine aminotransferase, ASAT = aspartate aminotransferase, GGT = gamma-glutamyl transpeptidase, NEFAs = non esterified fatty acids. Data are reported as
mean values 6 SD.
doi:10.1371/journal.pone.0073445.t001
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relationships between Log10 ratio 1 and the other parameters were

further assessed using a OPLS multivariate model (Figure S4).

Visceral Adiposity Links to Different Metabolic Response
to Oral Glucose Tolerance Test

Overall glucose and insulin response to OGTT correlated

significantly with visceral adiposity as observed by linear regression

with OGTT glucose and insulin AUC (Figure S5). When

comparing subjects stratified according to VAT content defined

quartiles, glucose-induced insulin secretion gradually increased

between Q1 and Q4. However, significant blood glucose

variations were only observed within the first 60 minutes post-

glucose absorption across the VAT quartiles (Table 2, similar

response was observed for different Log10 ratios).

Plasma Metabolic Profiles Revealed a Lipid and Amino
Acid Signature Associated with Visceral Adiposity

In order to identify phenotypic signatures of visceral fat

deposition, plasma samples were analysed using 1H-NMR and

targeted LC-MS/MS metabonomic approach. Analyses were

conducted on the fasting plasma samples collected at V0 and V2.

OPLS analysis of 1H-NMR samples collected at V0 and V2

Figure 1. Statistically significant Spearman correlation map between CT scan and DXA body composition parameters (95%
confidence interval). IPVF and Log10 IPVF correlated similarly to fat body composition parameters. Log10 IPVF showed a strong association with
android/gynoid fat ratio (r = 0.48, p = 0.0015), Log10 VAT/SAT (r = 0.72, p,0.001) and Log10 VAT/total abdominal fat (r = 0.71, p,0.001), subcutaneous
fat (r = 0.58, p,0.001), and some dependencies with lean mass parameters. Log10 values of VAT/SAT and VAT/total abdominal fat ratios were poorly
correlated with most body composition parameters, except for arms lean mass (r = 0.43, p = 0.0056; r = 0.42, p = 0.0070), whilst VAT/SAT correlated
with subcutaneous fat (r = 0.58, p = 0.0489), and android/gynoid fat ratio (r = 0.48, p = 0.0453). NB: Blue denotes negative correlation, orange denotes
positive correlation, and black denotes no correlation.
doi:10.1371/journal.pone.0073445.g001

Metabolic Signatures of Visceral Adiposity
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showed some subtle but significant associations between blood

plasma lipids and visceral fat deposition (R2X: 0.68; R2Y: 0.506;

Q2Y: 0.167), further confirmed by random forest analysis (Figure

S6). These results suggested plasma lipid remodelling marked by

changes in glycerophospholipids and fatty acid saturation patterns.

Targeted MS metabonomics provided quantitative measures of

163 metabolites, including amino acids, sugars, acyl-carnitines,

sphingolipids, and glycerophospholipids in plasma samples. A

metabolic signature of visceral fat adiposity was determined using

an OPLS analysis across the 40 individual subjects (R2X: 0.29;

R2Y: 0.68; Q2Y: 0.32). The model was then tested for assessing

inter-days metabolic variations, by considering each visit sepa-

rately and by modelling potential inter-days metabolic differences

(data not shown). No statistically significant differences were

observed in the blood plasma metabolic profile between V0 and

V2 (data not shown). Furthermore, the most robust metabolic

signatures of visceral fat status using either value of the

intraperitoneal fat volume, ratio 1 and ratio 2, were selected by

Random Forests analysis. Using this methodology, metabolite

importance and robustness in predicting visceral fat adiposity were

assessed using metabolic data collected at V0 and V2 (Figure 3). A

signature of specific amino acids, diacyl phospholipids and ether

lipid species was identified and shown to be preserved significantly

between days (Figure 3). Ultimately, 26 metabolites were retained

Figure 2. Statistically significant Spearman correlation map between body fat composition parameters and clinical measures (95%
confidence interval). Log10 values of IPVF, VAT/SAT, VAT/total abdominal fat were strongly associated with HOMA-IR (r = 0.39, p = 0.015; r = 0.56,
p,0.001; r = 0.55, p,0.001) and fasting insulin (r = 0.35, p = 0.0275; r = 0.49, p = 0.0017; r = 0.48, p = 0.0020). Strong associations were observed with
ALAT (r = 0.39, p = 0.0128; r = 0.37, p = 0.0175; r = 0.38, p = 0.0167) and ALAT/ASAT ratio (r = 0.44, p = 0.0044; r = 0.35, p = 0.0268; r = 0.35, p = 0.0302).
IPVF and Log10 values of IPVF correlated with waist (r = 0.55, p,0.001; r = 0.35, p = 0.04) and waist/hip ratio (r = 0.69, p,0.001; r = 0.52, p = 0.0017), but
not Log10 values of VAT/SAT and VAT/total abdominal fat. NB: Blue denotes negative correlation, orange denotes positive correlation, and black
denotes no correlation.
doi:10.1371/journal.pone.0073445.g002
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(Figure 3, Table 3, Table S3 and Table S4). Metabolite

importance and robustness in predicting visceral fat adiposity as

assessed by Random forest analysis using metabolic data collected

at V0 and V2, highlighted 7 most robust markers, including

tyrosine, glutamine, PC-O 44:6, PC-O 44:4, PC-O 42:4, PC-O

40:4, and PC-O 40:3.

To assess potential overlaps with insulin resistance, the

predictive performance of the seven most promising markers was

evaluated using two linear discriminant classification models based

on both visceral fat and HOMA-IR stratification of the

population. Model on visceral fat showed a sensitivity and

specificity in cross-validation of 0.90, which was fairly different

from the model on HOMA-IR (sensitivity (CV): 0.95, specificity

(CV): 0.68). This loss of specificity for the HOMA-IR model was

interpreted as a stronger association of the selected markers with

visceral adiposity. Figure 4 displays metabolite variations in the

study population stratified in four quartiles according to visceral

fat adiposity (Log10 value of intraperitoneal fat).

Eicosanoid Profiling Suggests that the Relationship
between Visceral Adiposity, Inflammation and Oxidative
Stress is Affected by other Environmental Confounders

To investigate relationships between visceral fat deposition and

low-grade inflammatory status, a targeted LC-MS/MS method

was employed to measure plasma eicosanoid concentrations at V0

and V2. Here, Random Forests analysis on quantitative data

displayed statistical relevant changes associated with the visceral

adiposity (Table 3, Figure S7, Table S3 and Table S4).

Urine Metabolic Profiles Suggested a Different Energy
and Microbial Metabolism in Subjects with High Visceral
Adiposity

1H-NMR spectra of the 24 hours urine samples were

normalized to creatinine concentration and were analyzed using

supervised chemometric analysis to assess the occurrence of

relationships with visceral adiposity. PLS analyses using 2

predictive components showed relationships between urine met-

abolic profile and visceral adiposity, at both timepoints, V1 or V2

(respective Q2Y values being 0.05, 0.217 and 0.54). OPLS analysis

confirmed a statistically significant relationship at V2 (1 predictive

and 2 orthogonal components, Q2Y value of 0.27). Visceral

adiposity was correlated with changes in central energy metabo-

lism (increased urinary excretion of 3-methyl-2-oxovaleric acid

(direct catabolic product of isoleucine), N1-methyl-2-pyridone-5-

carboxamide (2PY), N1-methyl-4-pyridone-3-carboxamide (4PY),

fucose, pyruvate, ethanolamine and lactate), protein metabolism

(increased pseudouridine, decreased taurine, and 3-methyl-histi-

dine), and gut microbial activities (decreased 4-cresol sulfate).

Since the subjects received a controlled dietary intake during V2,

these results suggest a strong incident of visceral fat adiposity on

individual nutritional response as noted here.

Integration of Visceral Adiposity, Clinical Parameters and
Metabonomics Markers

A heat map based on the Spearman correlations on CT scan,

main clinical parameters and selected discriminant metabolites

measured in plasma and urine of the 40 human subjects was used

to assess the relationships between the urine and plasma

metabonomics readouts and key physiological endpoints. These

correlations are shown in Figure 5 and Figure S8. Such an

approach enabled the assessment of linear relationships between

the parameters across the 40 subjects. In addition, for the 26 most

influential metabolites, the VIP values generated from PLS

regression against the visceral fat estimates are reported in Table

S5, to further exemplify these relationships. In particular, we

investigated the statistical relationships between selected metabo-

lites, HOMA-IR, ALAT/ASAT ratio and visceral adiposity

(Figure 5). The spearman correlation network between blood

Table 2. Insulin and glucose response to oral glucose tolerance test according to intraperitoneal/abdominal fat ratio.

Time variations Delta t30–t0 Delta t60–t0 Delta t90–t0 Delta t120–t0

Insulin concentrations (mU/mL)

Q1 74.69631.76 85.94649.76 75.25641.38 38.93632.32

Q2 77.93633.43 97.04641.48 62.87634.48 54.27631.97

Q3 79.25652.36 68.07642.78 91.01655.36 66.61632.39

Q4 108.80649.86 114.764664.45 108.73649.17 70.92629.56

t-test p values (Q1 vs. Q4) 0.085 0.278 0.117 0.033

Glucose concentrations (mmol/L)

Q1 1.6360.71 1.3061.01 0.7460.0.86 0.0161.86

Q2 2.4860.60 2.2961.39 1.6863.47 1.8863.72

Q3 3.0361.42 2.8161.59 1.7961.60 1.1661.28

Q4 3.2160.93 3.3361.6 1.9562.00 1.0962.05

t-test p values (Q1 vs. Q4) 0.0005 0.0006 0.096 0.2355

Estimates of beta cell function and insulin sensitivity OGTT Delta(Ins t30–t0)/(Gly t30–t0)

Q1 52.09626.56

Q2 31.16612.20

Q3 39.42632.53

Q4 41.81640.61

t-test p values (Q1 vs. Q4) 0.511

NB: Values are reported as mean values 6 SD. Key: Qi: data for population quartile i according to intraperitoneal/abdominal fat ratio.
doi:10.1371/journal.pone.0073445.t002
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plasma metabolites showed a strong connection between the

remodelling of ether lipid species and specific diacyl phospholipids,

which seem quite independent of changes in eicosanoids and

amino acids.

Discussion

Over the last decades, there was increasing awareness that

prevalence of fat storage in the trunk/android compartment over

gynoid (i.e. mainly subcutaneous) region associates with increased

insulin resistance and related cardiometabolic risk [36,37].

Assessments of visceral adiposity using VAT/SAT (ratio 1) and

VAT/total abdominal fat (ratio 2) ratios were conducted in the

present study, as they are known to better correlate to

cardiometabolic health, outperforming associative power of single

BMI and VAT [29]. In our cohort, IPVF, Log10 IPVF and waist/

hip ratio correlated similarly to several fat body composition

parameters (total, trunk, arms, android and abdominal fat),

concurring with literature [26,36,37]. VAT/SAT and VAT/total

abdominal fat ratios were independent of these variables, and also

related to android/gynoid fat ratio. Visceral adiposity expressed by

log10 values of IPVF, ratios 1 and 2 associated significantly with

insulin (fasting insulin, HOMA-IR) and hepatic (ALAT/ASAT)

metabolism unlike with other clinical parameters, including HDL,

LDL, and TG, which is consistent with the healthy status of the

enrolled subjects.

Ether Lipid Metabolic Signature of Visceral Adiposity
Highlights Potential Deregulations in Lipoprotein and
Phospholipid Metabolic Pathways

A visceral fat signature of specific amino acids and ether

phosphocholine lipid species was shown to be preserved signifi-

cantly between days (Figure 3). Ether lipid species represent 18%

of the total pool of phospholipids and are mainly composed by

plasmalogens. Although little is known about their systemic

metabolism, plasmalogens have been implicated in protection of

cellular functions against oxidative damage [38], and their

Figure 3. Plot describing metabolite importance and robustness in predicting visceral fat adiposity as assessed by Random forest
analysis using metabolic data collected at V0 and V2.Visceral adiposity was associated with increasing concentrations of amino acids
(glutamine, leucine/isoleucine, phenylalanine and tyrosine), lysophosphatidylcholine LPC 24:0 and diacyl phospholipids (PC 30:0, PC 34:4). In addition,
visceral adiposity was marked by a depletion in ether lipid species PC-O 36:3, PC-O 40:3, PC-O 40:4, PC-O 40:6, PC-O 42:2, PC-O 42:3, PC-O 42:4, PC-O
44:3, PC-O 44:4, PC-O 44:6, and two diacyl phosphocholines (PC 42:0 and PC 42:2). To reflect the weight of the selected biomarkers in the classification
of visceral adiposity, a pooled mean decrease of accuracy for each compound was calculated from 10000 forest generations. Higher variable
importance corresponds to higher values of pooled mean decrease in accuracy. Key: IPVF, intraperitoneal fat volume; LPC, Lysophosphatidylcholines;
PC, Phosphatidylcholines; PC-O, 1-O-alkyl-2- acylglycerophosphocholines; Ratio1, intraperitoneal/subcutaneous fat ratio; Ratio 2, intraperitoneal/
abdominal fat ratio. Assignment of PC-O species is made on the assumption that only even numbered carbon chains are present. A potential overlap
between PC species containing odd-chain fatty acids and even-chained PC-O species cannot be excluded with low mass resolution.
doi:10.1371/journal.pone.0073445.g003
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diminished levels have been reported in several diseases [39], e.g.

diabetes mellitus, vascular diseases and obesity [40] or peroxisome

biogenesis defects [41], all these conditions exhibiting a common

feature as regards with oxidative stress. Furthermore, our work

supports the association of polyunsaturated phospholipids species

with visceral adiposity [40]. Using a correlation analysis, PC-O

species reduced with increased visceral fat adiposity and positively

correlated to HDL circulating levels, a feature previously reported

for ageing-associated cardiometabolic disorders [42] and lipopro-

tein associated with visceral adiposity [26,43,44]. Indeed, lipopro-

tein fractions (VLDL, LDL, and HDL) were previously charac-

terized by a specific ether lipid class and species pattern [39]. Our

results confirm the involvement of PC-O species in glucose

metabolism providing an additional pattern of PC-O species

(PC-O 40:3, PC-O 40:4, PC-O 42:4, PC-O 44:3, and PC-O 44:6)

newly associated with visceral adiposity. Further correlation

analysis showed significant association between HOMA-IR and

circulating levels of PC-O 44:4, PC-O 44:5, PC-O 44:6 and PC-O

42:4. Floegel et al. reported a pattern of PC-O species (PC-O 34:3,

PC-O 40:6, PC-O 42:5, PC-O 44:4, and PC-O 44:5) correlated with

risk of T2D [45]. Taken together with literature data, our results

suggest the occurrence of a subset of PC-O species (PC-O 40:3, PC-

O 40:4, and PC-O 44:3) that would be specific to visceral adiposity.

Additionally, we observe that PC-O 42:4, PC-O 44:4, PC-O 44:5

and PC-O 44:6 appear as constant feature of insulin resistance

status or Type 2 pre-diabetic state.

Table 3. Metabolite variations across subjects stratified according to intraperitoneal/abdominal fat ratio.

Metabolites (concentration) Q1 Q2 Q3 Q4

Mann-
Whitney p
value (Q1/Q4)

PC-O 42:4*, mmol/L 1.3460.33 1.0960.28 1.0960.37 0.8260.22 0.00298

PC-O 40:3*, mmol/L 1.4160.27 1.4660.38 1.2760.3 0.8660.42 0.00421

PC-O 44:6*, mmol/L 1.5260.56 1.2260.3 1.1160.5 1.0360.32 0.01013

PC-O 44:4*, mmol/L 0.860.3 0.6760.24 0.6360.19 0.5160.18 0.01721

PC-O 40:4*, mmol/L 2.7960.56 2.960.73 2.4760.69 2.0260.83 0.01784

Glutamine, mmol/L 615.566107.95 7486193.49 792.16260.61 714694.03 0.02468

PC-O 36:3*, mmol/L 7.0461.68 6.762.61 7.1161.82 5.561.24 0.02792

8-iso-PGF2a, ng/100 mL 0.00860.011 0.00460.001 0.00360.002 0.00360.001 0.0370

Phenylalanine, mmol/L 49.9614.16 50.4768.45 62.82622.17 56.4268.38 0.04113

PC-O 44:5*, mmol/L 2.2960.74 2.0360.55 1.960.74 1.7160.7 0.04113

Leucine+Isoleucine, mmol/L 181.44653.02 214.2656.71 202.4627.39 228.8633.83 0.04536

Tyrosine, mmol/L 61.97611.02 80.54622.21 75.91621.83 80.99624.69 0.05347

PC-O 42:2*, mmol/L 0.6660.23 0.5660.14 0.5360.16 0.4560.18 0.05347

PC-O 40:6*, mmol/L 3.8160.86 3.2761.09 2.860.84 2.7461.09 0.06525

PC-O 42:3*, mmol/L 0.8960.2 0.9260.14 0.960.27 0.6360.26 0.06525

PC-O 36:2*, mmol/L 11.2962.64 11.8662.68 10.3863.08 9.1762.09 0.07865

PC 42:0, mmol/L 0.6560.23 0.4860.16 0.4760.08 0.4860.14 0.07889

Palmitoylcarnitine, mmol/L 0.0760.02 0.0760.03 0.0760.03 0.1060.04 0.12065

PC 30:0, mmol/L 4.4361.48 5.1762.35 5.7561.98 5.5761.76 0.1564

PC-O 44:3*, mmol/L 0.2160.06 0.260.04 0.1560.06 0.1760.05 0.1564

PC-O 34:1*, mmol/L 9.9462.22 9.7863.84 8.4862.15 8.5360.99 0.17752

15-HETE, ng/100 mL 0.0860.05 0.1760.29 0.160.13 0.160.18 0.18231

PC-O 34:2*, mmol/L 10.6663.5 9.3163.51 9.3864.57 8.7761.76 0.21102

LPC 24:0, mmol/L 0.3660.25 0.5160.24 0.5260.36 0.4660.31 0.21613

Octenoylcarnitine, mmol/L 0.0460.02 0.0560.02 0.0560.04 0.0560.02 0.25258

9-HODE, ng/100 mL 0.1060.02 0.1260.05 0.1160.02 0.1260.04 0.25831

PC 34:4, mmol/L 1.360.46 1.5361.14 1.4160.52 1.5560.75 0.31537

Caproylcarnitine, mmol/L 0.2260.10 0.260.09 0.1460.06 0.3060.19 0.40018

PC 42:2, mmol/L 0.260.06 0.1960.11 0.1360.05 0.1760.08 0.40018

12-HETE, ng/100 mL 0.6060.72 0.2860.3 1.1562.15 0.4160.36 0.8421

AA, ng/100 mL 784.226236.64 764.96314.46 854.76193.24 785.66160.86 0.96823

NB: Blood plasma metabolites highlighted by multivariate analyses are reported as mean values 6 SD. Key: Qi: data for population quartile i according to
intraperitoneal/abdominal fat ratio. 12-HETE, 12-hydroxy-eicosatetraenoic acid; 15-HETE, 12-hydroxy-eicosatetraenoic acid; 9-HODE, 9-Hydroxy-10,12-octadecadienoic
acid; AA, arachidonic acid; LPC, Lysophosphatidylcholines; PC, Phosphatidylcholines; PC-O, 1-O-alkyl-2- acylglycerophosphocholines; SM, Sphingomyelines; SM-OH,
Hydroxy-Sphingomyelin.
*Assignment of PC-O species is made on the assumption that only even numbered carbon chains are present. A potential overlap between PC species containing odd-
chain fatty acids and even-chained PC-O species cannot be excluded with low mass resolution.
doi:10.1371/journal.pone.0073445.t003
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Our results further supported by the recent study by Szymanska

et al. [26], strongly suggest a remodelling of phospholipid species,

which may result from a multi-factorial origin, including dietary

factors, gut functional ecology, intestinal absorption, as well as

Platelet-Activating Factor (PAF) metabolic pathways and phos-

pholipase A2 activities [46,47], which are modulated by obesity

and insulin resistance [3,48].

Evidence tends to support the notion that oxidative-stress-

induced dysregulation of inflammation and adipokines may

mediate the obesity-related metabolic derangement [49]. Here,

high visceral fat subjects tend to display a different balanced

network of lipid mediators, as noted by an alteration of the

arachidonic metabolism. However, the greater inter-day variabil-

ity in the dynamics of these pathways may suggest that the visceral-

Figure 4. Bar plots describing metabolite variations in the study population stratified in four quartiles according to visceral fat
adiposity (intraperitoneal fat) at V2. Statistical significance is reported in Table S3. Key: PC-O, 1-O-alkyl-2- acylglycerophosphocholines.
Assignment of PC-O species is made on the assumption that only even numbered carbon chains are present. A potential overlap between PC species
containing odd-chain fatty acids and even-chained PC-O species cannot be excluded with low mass resolution.
doi:10.1371/journal.pone.0073445.g004
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associated influence is also dependent on lifestyle and dietary

intakes. Previously reported studies displayed how enhanced lipid

peroxidation and persistent platelet activation associate to visceral

adiposity might be influenced by weight-loss program or simply by

the type of fat in meals [3,50]. Here, a decreased circulating level

of 8-iso-PGF2a was highlighted, a feature negatively correlated

with the visceral fat ratio and android fat across the 40 subjects

and positively with blood pressure. Others have characterized how

increased blood and urinary levels of 8-iso-PGF2a correlate with

oxidative stress and android obesity [3,51]. 8-iso-PGF2a is

generally released from the site of inflammation as esters of

phospholipid (bound) or through the action of phospholipase A2 in

free form [52]. 8-iso-PGF2a concentration was positively corre-

lated with the concentrations of several ether lipids decreasing with

visceral adiposity (e.g. PC-O 40:4, PC-O 42:2, PC-O 42:3, PC-O

42:4). Furthermore, whilst 12- and 15-LO enzymes are known to

be up-regulated in visceral adipocytes, their products (12- and 15-

hydroxy-eicosatetraenoic acid 12/15-HETE) promote proinflam-

matory state and impairing insulin signaling in adipocytes [4,53].

However, the circulating levels of 12/15-HETE concentrations

were not statistically different between groups, suggesting that the

circulating levels of these molecules in fasting blood are not

directly related to visceral fat metabolism under the current

experimental conditions.

Visceral Adiposity Links to a Specific Amino Acid Pattern
Associated with Deregulated Insulin Signaling

Plasma amino acids (including glutamine, leucine/isoleucine,

phenylalanine and tyrosine) significantly contributed to the

metabolic phenotypes of visceral adiposity, with a greater

specificity being observed for glutamine and tyrosine levels. Our

findings are partly supported by a recent report on obese Japanese

subjects in which plasma levels of alanine, glycine, glutamate,

tryptophan, tyrosine and BCAA amino acids associated with

visceral fat accumulation [27]. Our results support associations of

levels of BCAA and tyrosine with visceral adiposity, irrespective of

ethnicity, lifestyle and environmental conditions. Although

requiring proper validation on a larger population, one may

postulate that levels of glycine, glutamate, tryptophan, glutamine

and phenylalanine associated with visceral adiposity could be

genetic and environmental dependent either in healthy obese [27]

or in pre-diabetic subjects as recently reported [54]. Association of

BCAA levels with visceral adiposity is supported by previous

reports proposing these as co-variants of insulin resistance [55,56].

In fact, BCAA catabolism is tightly intertwined with insulin

resistance, and greater circulating levels of BCAA were reported

under these conditions [57,58]. In particular, a combination of

three amino acids (isoleucine, phenylalanine, tyrosine) could

predict future diabetes (.5-fold higher risk for individuals in top

quartile) [59,60]. Recent results showed that fat tissue metabolism

is key in determining the blood level of branch chain amino acids

[61]. Indeed, it is suggested that altered signaling in white adipose

tissue under insulin resistance, pre-diabetes or type 2 diabetes

Figure 5. Spearman correlation network between blood plasma metabolic markers highlighting strong functional relationships
between phospholipids and eicosanoid metabolic remodelling. Non significant correlations and those between 0.4 and 20.4 were removed
to reduce the number of edges and facilitate visualization.
doi:10.1371/journal.pone.0073445.g005

Metabolic Signatures of Visceral Adiposity

PLOS ONE | www.plosone.org 11 September 2013 | Volume 8 | Issue 9 | e73445



conditions can induce decreased expression of branched-chain-

keto acid dehydrogenase (BCKD) with inferred impairment of

BCAA utilization as metabolic fuel in this tissue. As a result, one

may postulate that this reduced BCAA utilization in adipose tissue

increases the circulating pool of isoleucine and its direct catabolic

product, the 3-methyl-2-oxovaleric acid, via reversible transami-

nation by branched chain amino-acid transaminase 1. This may

explain the observed increased urinary excretion of 3-methyl-2-

oxovaleric acid in high visceral fat subjects.

In the present study, visceral adiposity was associated with

different response to OGTT, as noted with an early increase in

post-glucose insulin concentrations and enhanced glucose-induced

insulin secretion. Knowing that insulin resistance is a causal

mechanism in the etiology of visceral fat development and related

disorders, the observation of such amino acid and OGTT patterns

support this functional relationship. Moreover, removal of

intraperitoneal fat tissue, a major compartment of visceral

adiposity, significantly restores glucose and insulin towards normal

levels in humans, but not subcutaneous adipose tissue [22].

The study presents several potentialities, including the use of

CT and DXA measurements to provide robust biological readouts

to compare the association between different estimates of visceral

adiposity. Then, the subjects were recruited from a well-defined

population, which represented a single ethnic group under well-

defined conditions and healthy medical criteria. This study also

has several limitations, due to exploratory nature and the use of a

single cohort study with a small number of subjects and the results

are confined to this specific cohort. Therefore, further studies are

needed to determine the predictive role of the highlighted

metabolic signature clustering of cardiometabolic risk factors and

subsequent incidence of cardiovascular diseases. Since the

metabolic signatures encompass features related to glucose/insulin

metabolism, future studies should investigate closely the relation-

ships between metabolism, visceral adiposity and glucose tolerance

classes. Moreover, there is compelling evidence that relationships

between abdominal fat distribution and insulin and non-insulin-

mediated glucose uptake in females are dependent on endogenous

androgens [62], whilst the global adiposity and thickness of

intraperitoneal and mesenteric adipose tissue depots have been

found increased in women with polycystic ovary syndrome [63]. It

will be therefore key in future studies to comprehensively integrate

endocrinopathy with metabonomics and other physiological

parameters.

Conclusions

The integration of visceral fat estimates with metabolic profiles

of blood and urine described a distinct amino acid, diacyl and

ether phospholipid phenotype associated with higher visceral fat in

a healthy obese women cohort. Metabolite importance and

robustness in predicting visceral fat adiposity as assessed by

Random forest analysis highlighted 7 most robust markers,

including tyrosine, glutamine, PC-O 44:6, PC-O 44:4, PC-O

42:4, PC-O 40:4, and PC-O 40:3.Moreover, the inflammatory

intermediate profile appears of lower relevance for clinical

assessment of visceral fat due to greater inter-days and between-

subject variations. Considering the recent studies regarding at

metabolic processes associated with different body fat distributions,

it becomes imperative that the following studies comprehensively

report anthropometric, endocrine, clinical and medical details of

the cohort, in addition to race/ethnic and age variability. This will

allow a stronger link to unravel metabolic susceptibilities to

metabolic syndrome and cardiovascular health. Such reports will

enable proper comparison of metabolic findings and follow-up in

larger populations. In future, systemic metabonomic visceral

adiposity biomarkers might also be extended to distinguish its

mesenteric, epicardial and peripheric deposition subtypes which

may link even more specifically to cardiometabolic status of

patients with disorders or at risk of diseases.
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Figure S1 Loadings plot from Principal component
analysis of CT and DEXA body composition parameters.
First two pprincipal components explained 42 and 17% of the total

variance.

(TIF)

Figure S2 Loadings plot from orthogonal partial least
square analysis of Log10 value of ratio 1 with CT and
DEXA body composition parameters. OPLS model was

generated with 1 predictive and 2 orthogonal components

(R2X = 0.60, R2Y = 0.96, Q2Y = 0.90).

(TIF)

Figure S3 Loadings plot from Principal component
analysis of CT, DEXA body composition and clinical
parameters. First two pprincipal components explained 29 and

13% of the total variance.

(TIF)

Figure S4 Loadings plot from orthogonal partial least
square analysis of Log10 value of ratio 1 with CT and
DEXA body composition parameters. OPLS model was

generated with 1 predictive and 2 orthogonal components

(R2X = 0.45, R2Y = 0.92, Q2Y = 0.75).

(TIF)

Figure S5 Linear regression between glucose response
to OGTT and visceral adiposity.

(TIF)

Figure S6 Statistical reconstruction of 1H NMR blood
plasma profiles using random forest analysis to identify
metabolic patterns associated with visceral adiposity (as
identified with squared boxes). GPCs = glycerophospholi-

pids, PUFAs = polyunsaturated fatty acids, UFAs = unsaturated

fatty acids.

(TIF)

Figure S7 Scheme summarizing metabolic differences
in the arachidonic and linoleic acid metabolic pathway
across the four groups of visceral adiposity (Q1, Q2, Q3,
and Q4). Bar plots describing metabolite variations in the study

population stratified in four quartiles according to visceral fat

adiposity (intraperitoneal fat). Statistical significance is reported in

Table S2. Key: Qi: data for population quartile i according to

intraperitoneal/abdominal fat ratio. 12-HETE, 12-hydroxy-eico-

satetraenoic acid; 15-HETE, 12-hydroxy-eicosatetraenoic acid; 9-

HODE, 9-Hydroxy-10,12-octadecadienoic acid; AA, arachidonic

acid.

(TIF)

Figure S8 Statistically significant Spearman correlation
map between visceral fat parameters CT scan, DXA
data and main clinical parameters (95% confidence
interval). HOMA-IR is negatively correlated with PC-O 42:4,

PC-O 44:4, and PC-O 44:6 lipid species, and positively with blood

triglycerides, cGT, and age. ALAT/ASAT ratio showed positive

correlations with AA and EPA, PC 34:4, PC 30:0 and LPC 24:0

lipid species, but also fasting blood insulin, cGT and triglycerides,

waist circumference and waist to hip ratio. Blue denotes negative
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correlation, orange denotes positive correlation, and black denotes

no correlation.

(TIF)
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