58 research outputs found

    Simulation of high brightness tapered lasers

    Get PDF
    Tapered semiconductor lasers have demonstrated both high power and good beam quality, and are of primary interest for those applications demanding high brightness optical sources. The complex non-linear interaction between the optical field and the active material requires accurate numerical simulations to improve the device design and to understand the underlying physics. In this work we present results on the design and simulation of tapered lasers by means of a Quasi- 3D steady-state single-frequency model. The results are compared with experiments on Al-free active region devices emitting at 1060 nm. The performance of devices based on symmetric and asymmetric epitaxial designs is compared and the influence of the design on the beam properties is analyzed. The role of thermal effects on the beam properties is experimentally characterized and analyzed by means of the numerical simulations. Tapered lasers with separate electrical contacts in the straight and tapered sections, based on symmetrical and asymmetrical epitaxial designs are also presented and analyze

    Fungal and Bacterial Loads: Noninvasive Inflammatory Bowel Disease Biomarkers for the Clinical Setting

    Get PDF
    Malaltia inflamatĂČria intestinal; CĂ rrega microbiana; PredicciĂłEnfermedad inflamatoria intestinal; Carga microbiana; PredicciĂłnInflammatory bowel disease; Microbial load; PredictionMicrobiome sequence data have been used to characterize Crohn's disease (CD) and ulcerative colitis (UC). Based on these data, we have previously identified microbiomarkers at the genus level to predict CD and CD relapse. However, microbial load was underexplored as a potential biomarker in inflammatory bowel disease (IBD). Here, we sought to study the use of fungal and bacterial loads as biomarkers to detect both CD and UC and CD and UC relapse. We analyzed the fecal fungal and bacterial loads of 294 stool samples obtained from 206 participants using real-time PCR amplification of the ITS2 region and the 16S rRNA gene, respectively. We combined the microbial data with demographic and standard laboratory data to diagnose ileal or ileocolonic CD and UC and predict disease relapse using the random forest algorithm. Fungal and bacterial loads were significantly different between healthy relatives of IBD patients and nonrelated healthy controls, between CD and UC patients in endoscopic remission, and between UC patients in relapse and non-UC individuals. Microbial load data combined with demographic and standard laboratory data improved the performance of the random forest models by 18%, reaching an average area under the receiver operating characteristic curve (AUC) of 0.842 (95% confidence interval [CI], 0.65 to 0.98), for IBD diagnosis and enhanced CD and UC discrimination and CD and UC relapse prediction. Our findings show that fecal fungal and bacterial loads could provide physicians with a noninvasive tool to discriminate disease subtypes or to predict disease flare in the clinical setting. IMPORTANCE Next-generation sequence data analysis has allowed a better understanding of the pathophysiology of IBD, relating microbiome composition and functions to the disease. Microbiome composition profiling may provide efficient diagnosis and prognosis tools in IBD. However, the bacterial and fungal loads of the fecal microbiota are underexplored as potential biomarkers of IBD. Ulcerative colitis (UC) patients have higher fecal fungal and bacterial loads than patients with ileal or ileocolonic CD. CD patients who relapsed harbor more-unstable fungal and bacterial loads than those of relapsed UC patients. Fecal fungal and bacterial load data improved prediction performance by 18% for IBD diagnosis based solely on clinical data and enhanced CD and UC discrimination and prediction of CD and UC relapse. Combined with existing laboratory biomarkers such as fecal calprotectin and C-reactive protein (CRP), microbial loads may improve the diagnostic accuracy of IBD and of ileal CD and UC disease activity and prediction of UC and ileal CD clinical relapse.This work was funded by Instituto de Salud Carlos III, grant PI17/00614, cofinanced by the European Regional Development Fund (ERDF) and by the PERIS (SLT002/16). F. Casellas has received research funding from AbbVie, Ferring, MSD, Shire, and Zambon and speaker fees from AbbVie, Chiesi, Ferring, Gebro, MSD, Shire, Takeda, and Zambon. S. Vermeire has received grant support from AbbVie, MSD, Pfizer, J&J, and Takeda; received speaker fees from AbbVie, MSD, Takeda, Ferring, Dr. Falk Pharma, Hospira, Pfizer Inc., and Tillots; and served as a consultant for AbbVie, MSD, Takeda, Ferring, Genentech/Roche, Robarts clinical trials, Gilead, Celgene, Prometheus, Avaxia, Prodigest, Shire, Pfizer Inc, Galapagos, Mundipharma, Hospira, Celgene, Second Genome, and Janssen. C. Manichanh has received financial support for research from Danone

    Transition between Variscan and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic evolution of near-equator European Permian basins

    Get PDF
    In the northern Iberian Peninsula, the Pyrenean-Cantabrian orogenic belt extends E-W for ca. 1000 km between the Atlantic Ocean and Mediterranean Sea. This orogen developed from the collision between Iberia and Eurasia, mainly in Cenozoic times. Lower-middle Permian sediments crop out in small, elongated basins traditionally considered independent from each other due to misinterpretations on incomplete lithostratigraphic data and scarce radiometric ages. Here, we integrate detailed stratigraphic, sedimentary, tectonic, paleosol and magmatic data from well-dated lithostratigraphic units. Our data reveal a similar geodynamic evolution across the Pyrenean-Cantabrian Ranges at the end of the Variscan cycle. Lower-middle Permian basins started their development under an extensional regime related to the end of the Variscan Belt collapse, which stars in late Carboniferous times in the Variscan hinterland. This orogenic collapse transitioned to Pangea breakup at the middle Permian times in the study region. Sedimentation occurred as three main tectono-sedimentary extensional phases. A first phase (Asselian-Sakmarian), which may have even started at the end of the Carboniferous (Gzhelian) in some sections, is mainly represented by alluvial sedimentation associated with calc-alkaline magmatism. A second stage (late Artinskian-early Kungurian), represented by al-luvial, lacustrine and palustrine sediments with intercalations of calc-alkaline volcanic beds, shows a clear up-ward aridification trend probably related to the late Paleozoic icehouse-greenhouse transition. The third and final stage (Wordian-Capitanian) comprised of alluvial deposits with intercalations of alkaline and mafic beds, rarely deposited in the Cantabrian Mountains, and underwent significant pre-and Early Mesozoic erosion in some segments of the Pyrenees. This third stage can be related to a transition towards the Pangea Supercontinent breakup, not generalized until the Early/Middle Triassic at this latitude because the extensional process stopped about 10 Myr (Pyrenees) to 30 Myr (Cantabrian Mountains). When compared to other well-dated basins near the paleoequator, the tectono-sedimentary and climate evolution of lower-middle Permian basins in Western and Central Europe shows common features. Specifically, we identify coeval periods with magmatic activity, extensional tectonics, high subsidence rates and thick sedi-mentary record, as well as prolonged periods without sedimentation. This comparison also identifies some evolutionary differences between Permian basins that could be related to distinct locations in the hinterland or foreland of the Variscan orogen. Our data provide a better understanding of the major crustal re-equilibration and reorganization that took place near the equator in Western-Central Europe during the post-Variscan period

    Simulation of facet heating in high-power red lasers

    Get PDF
    A two-dimensional self-consistent laser model has been used for the simulation of the facet heating of red emitting AlGaInP lasers. It solves in the steady-state the complete semiconductor optoelectronic and thermal equations in the epitaxial and longitudinal directions and takes into account the population of different conduction band valleys. The model considers the possibility of two independent mechanisms contributing to the facet heating: recombination at surface traps and optical absorption at the facet. The simulation parameters have been calibrated by comparison with measurements of the temperature dependence of the threshold current and slope efficiency of broad-area lasers. Facet temperature has been measured by micro-Raman spectrometry in devices with standard and non absorbing mirrors evidencing an effective decrease of the facet heating due to the non absorbing mirrors. A good agreement between experimental values and calculations is obtained for both devices when a certain amount of surface traps and optical absorption is assumed. A simulation analysis of the effect of non absorbing mirrors in the reduction of facet heating in terms of temperature, carrier density, material gain and Shockly-Read-Hall recombination rate profiles is provided

    Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating

    Get PDF
    In this study, the authors examine some of the factors affecting the brightness and the beam quality of high-power tapered lasers. The large volume resonators required to achieve a high-power, high-brightness operation make the beam quality sensitive to carrier lensing and a multimode operation. These cause bleaching of the regions outside the ridge waveguide. The beam quality in the conventional and the distributed Bragg reflector tapered lasers is examined in the absence of the self-heating effects to investigate the effect of the carrier lensing effects. The influence of the front facet reflectivity and the taper angle on the beam quality is investigated. The beam quality was found to degrade with an increase in the front facet reflectivity and for the larger taper angles in the conventional tapered lasers, especially at low ridge waveguide currents. Finally, the performance of the conventional tapered lasers employing a beamspoiler was assessed. The beam quality was found to be comparable with that achieved in the DBR tapered lasers

    New lithostratigraphy for the Cantabrian Mountains: A common tectono-stratigraphic evolution for the onset of the Alpine cycle in the W Pyrenean realm, N Spain

    Get PDF
    The Pyrenean-Cantabrian Orogen arose through the collision of the Iberian and Eurasian plates, mostly in Cenozoic times. This orogen comprises two main mountain ranges, the Pyrenees to the east, and the Cantabrian Mountains to the west. To date, the early Alpine tectono-sedimentary phases preserved in the Cantabrian Mountains, of Permian and Triassic age, have been considered independently from the same phases in neighbouring basins of SW Europe, and even from the eastern part of the same orogeny (the Pyrenean orogeny). In consequence, the beginning of the Alpine cycle in the Cantabrian Mountains has been interpreted within a specific geodynamic context, far from the general evolutionary phases of the western Peri-Tethys basins. Through detailed field work, including geological mapping, sedimentology, lithostratigraphy and petrology of volcanic rocks, and new palaeontological data, here we define several new lithostratigraphical formations and five new tectono-sedimentary cycles (TS I-V) for the initial phases of evolution of the Mesozoic Basque-Cantabrian Basin, interrupted by periods of tectonic stability. To complete this information, we include data from an onshore borehole (Villabona Mine) and two offshore boreholes constrained by 2D reflection seismic profiles acquired in the North Iberian continental platform. The main tectono-sedimentary cycles, related to the deposition of five major identified lithostratigraphic units, can be described as follows: TS I (late Gzelian-early Asselian), relating to the late Variscan deformation and preserved in a single outcrop in all the Cantabrian Mountains (San Tirso Formation). This formation is constituted by medium-distal alluvial fan deposits in which humid intervals predominate, forming some thin coal beds. TS II (Asselian-Sakmarian), a post-Variscan extensional phase with associated calc-alkaline magmatism, represented by profuse volcanic and volcanosedimentary intercalations in the early Permian sedimentary basins (Acebal Formation) and small plutons in surrounding areas. TS III (Kungurian), or reactivation of the post-Variscan extension leading to alluvial and lacustrine carbonate sedimentation in arid climate conditions, which do not change during the rest of the Permian and Triassic periods (Sotres Formation). A generalized karstification in the basin represents the end of Permian deposition, followed by an interruption in sedimentation longer than 30 Myr. The Permian tectono-sedimentary cycles (TS II and TS III) are contemporary with Variscan belt collapse and the basins are controlled by extensional reactivation of NE-SW and E-W Variscan structures, and NW-SE late Variscan structures. TS IV (late Anisian–middle Carnian), renewed sedimentation in more extensive basins, precursors of the great Mesozoic Basque-Cantabrian Basin. This cycle is represented by fluvial deposits (Cicera Formation, or Buntsandstein facies), which are interrupted by the first Mesozoic marine ingression (Rueda Formation, or Muschelkalk facies). TS V (Norian-Rhaetian), or shallow marine carbonate deposits (Transición Formation) related to increasingly compartmentalized sub-basins, controlled by normal faults. This final TS is broadly connected with different basins of the western Peri-Tethys domain. The identification of units TS I-V in the Cantabrian Mountains along with the volcanic character of TS II, all indicate the development of a common post-Variscan to early Alpine tectono-sedimentary evolution for the whole Pyrenean-Cantabrian realm

    Mechanisms Involved in Alleviation of Intestinal Inflammation by Bifidobacterium Breve Soluble Factors

    Get PDF
    Objectives: Soluble factors released by Bifidobacterium breve C50 (Bb) alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM) and other Gram(+) commensal bacteria to dampen inflammatory chemokine secretion. Methods: TNFa-induced chemokine (CXCL8) secretion and alteration of NF-kB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. Results: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkB-a molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. Conclusions: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylation

    Bifidobacterium infantis strains with and without a combination of Oligofructose and Inulin (OFI) attenuate inflammation in DSS-induced colitis in rats

    Get PDF
    BACKGROUND: Pathogenesis of inflammatory bowel disease is thought to be through different factors and there is a relationship between the gut flora and the risk of its development. Probiotics can manipulate the microflora in chronic inflammation and may be effective in treating inflammation. Bifidobacterium are saccharolytic and their growth in the gut can be promoted by non-absorbable carbohydrates and its increase in the colon appears to be of benefit. METHODS: Oligofructose and inulin (OFI) alone and the two B. infantis DSM 15158 and DSM 15159 with and without OFI, were fed to Sprague-Dawley rats for 7 days prior to colitis induction and administrations continued for another 7 days with the DSS. Colitis severity assessed using a Disease Activity Index. Samples were collected 7 days after colitis induction, for intestinal bacterial flora, bacterial translocation, short chain fatty acids (SCFAs), myeloperoxidase (MPO), cytokines (IL-1ÎČ, TNF-α, IL-10 and TGF-ÎČ) and malondialdehyde (MDA). RESULTS: OFI alone or the B. infantis strains with and without OFI improved significantly the DAI and decreased colonic MPO activity. Colonic tissue IL-1ÎČ decreased significantly in all treated groups except B. infantis DSM 15158. MDA decreased significantly in B. infantis DSM 15159 with and without OFI compared to colitis control. Succinic acid increased significantly in OFI group with and without DSM 15159 compared to all groups. Sum values of propionic, succinic acid and butyric acid increased significantly in all groups compare to the colitis control. Bacterial translocation to mesenteric lymph nodes decreased significantly in all groups compared to colitis control. Translocation to the liver decreased significantly in all groups compare to the colitis control and OFI + B. infantis DSM 15158 groups. CONCLUSION: Administrations of OFI and Bifidobacterium improve DSS-induced acute colitis and have an anti-inflammatory effect. Major differences in effect were observed between the two B. infantis strains as indicated in MDA and succinic acid concentration as well as bacterial translocation rate in synbiotic combinations
    • 

    corecore