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Abstract 

The Pyrenean-Cantabrian Orogen arose through the collision of the Iberian and 
Eurasian plates, mostly in Cenozoic times. This orogen comprises two main mountain 
ranges, the Pyrenees to the east, and the Cantabrian Mountains to the west. To date, the 
early Alpine tectono-sedimentary phases preserved in the Cantabrian Mountains, of 
Permian and Triassic age, have been considered independently from the same phases in 
neighbouring basins of SW Europe, and even from the eastern part of the same orogeny  
(the Pyrenean orogeny). In consequence, the beginning of the Alpine cycle in the 
Cantabrian Mountains has been interpreted within a specific geodynamic context, far 
from the general evolutionary phases of the western Peri-Tethys basins. 

Through detailed field work, including geological mapping, sedimentology, 
lithostratigraphy and petrology of volcanic rocks, and new palaeontological data, here 
we define several new lithostratigraphical formations and five new tectono-sedimentary 
cycles (TS I-V) for the initial phases of evolution of the Mesozoic Basque-Cantabrian 
Basin, interrupted by periods of tectonic stability. To complete this information, we 
include data from an onshore borehole (Villabona Mine) and two offshore boreholes 
constrained by 2D reflection seismic profiles acquired in the North Iberian continental 
platform. The main tectono-sedimentary cycles, related to the deposition of five major 
identified lithostratigraphic units, can be described as follows: 

TS I (late Gzelian-early Asselian), relating to the late Variscan deformation and 
preserved in a single outcrop in all the Cantabrian Mountains (San Tirso Formation). 
This formation is constituted by medium-distal alluvial fan deposits in which humid 
intervals predominate, forming some thin coal beds. 

TS II (Asselian-Sakmarian), a post-Variscan extensional phase with associated calc-
alkaline magmatism, represented by profuse volcanic and volcanosedimentary 
intercalations in the early Permian sedimentary basins (Acebal Formation) and small 
plutons in surrounding areas. 

TS III (Kungurian), or reactivation of the post-Variscan extension leading to alluvial 
and lacustrine carbonate sedimentation in arid climate conditions, which do not change 
during the rest of the Permian and Triassic periods (Sotres Formation). A generalized 
karstification in the basin represents the end of Permian deposition, followed by an 
interruption in sedimentation longer than 30 Myr. The Permian tectono-sedimentary 
cycles (TS II and TS III) are contemporary with Variscan belt collapse and the basins 
are controlled by extensional reactivation of NE-SW and E-W Variscan structures, and 
NW-SE late Variscan structures. 

TS IV (late Anisian–middle Carnian), renewed sedimentation in more extensive basins, 
precursors of the great Mesozoic Basque-Cantabrian Basin. This cycle is represented by 
fluvial deposits (Cicera Formation, or Buntsandstein facies), which are interrupted by 
the first Mesozoic marine ingression (Rueda Formation, or Muschelkalk facies). 
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TS V (Norian-Rhaetian), or shallow marine carbonate deposits (Transición Formation) 
related to increasingly compartmentalized sub-basins, controlled by normal faults. This 
final TS is broadly connected with different basins of the western Peri-Tethys domain. 

The identification of units TS I-V in the Cantabrian Mountains along with the volcanic 
character of TS II, all indicate the development of a common post-Variscan to early 
Alpine tectono-sedimentary evolution for the whole Pyrenean-Cantabrian realm. 

Keywords: Cantabrian Mountains, Pyrenees, Pyrenean-Cantabrian Orogen, Alpine 
Cycle, Permian-Triassic, post-Variscan tectonics  

 

1. Introduction 

The Cantabrian Mountains are the western extension of the Pyrenean-Cantabrian 

Orogen, uplifted during the orogenic phases of the Alpine Cycle in this area. In the 

Pyrenean-Cantabrian orogenic belt, the Alpine Cycle consists in an early Permian-Late 

Cretaceous pre-orogenic phase and a subsequent synorogenic phase, active between the 

Late Cretaceous and the Miocene. The Pyrenean-Cantabrian orogeny is the result of the 

collision between the Iberian and Eurasian plates, mostly in Cenozoic times. It 

comprises two main mountain ranges, the Pyrenees in the east, forming the isthmus 

between France and Spain, and the Cantabrian Mountains in the west, running parallel 

to the North Spanish coast of the southern Bay of Biscay (Pulgar et al., 1996; 

Gallastegui et al., 2002; Barnolas and Pujalte, 2004; Pedreira et al., 2007; Martín-

González and Heredia, 2011 a, b) (Fig. 1a). 

Today, the early tectono-sedimentary phases of the Alpine cycle in the Cantabrian 

Mountains of Permian and Triassic age, are considered an undifferentiated event, with 

rocks deposited in a single, large extensional basin, precursor of the great Mesozoic 

Basque-Cantabrian Basin. This overview arose from misinterpretation of some 

lithological formations due to the apparent continuity and similar red beds facies of both 

Permian and Triassic rocks, which have been jointly described and mapped as 

"Permian-Triassic rocks". Further, the poorly preserved fossil contents and therefore 

uncertain age of the rocks, has led to the proliferation of works based on erroneous 

stratigraphic interpretations. As a result, many present-day Permian and Triassic 

lithostratigraphical formations have been erroneously aged or appear repeated with 

different names, or laterally correlated with areas where they were not deposited. 

Because of these stratigraphic issues, the lithostratigraphical formations, main 
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sedimentary cycles, and tectonic and palaeogeographical evolution of the Permian and 

Triassic phases in the Cantabrian Mountains have not been well constrained. Indeed, the 

rocks the record preserved in these rocks is difficult to compare with other major 

sedimentary cycles of the same time-interval preserved in the Pyrenees and adjacent 

basins of the same age. Despite these challenges, over the 20th century, many basic, 

interesting studies focussed on mining served to sketch the first geological maps of the 

Permian and Triassic rocks. Major work in this field was conducted by De Jong (1971), 

Martínez-García (1981), García-Mondejar et al. (1986), Suárez-Rodríguez (1988). More 

recently, numerous synthesis studies have been carried out by Martínez-García (1991, 

1999), López-Gómez et al. (2002), Robles (2004) and Robles and Pujalte (2004). Only  

few palaeontological data, basically from Permian rocks, are described in Patac (1920), 

Wagner and Martínez-García (1982), Demathieu and Saiz de Omeñaca (1990), Mamet 

and Martínez-García (1995), Gand et al. (1997), Sopeña et al. (2009) and Juncal et al. 

(2016). This scarcity of data led to investigations of tectono-sedimentary relationships 

in the past century (Julivert, 1971; Alonso et al., 1996; García-Espina, 1997; Pulgar et 

al., 1999), as weel as in recent active research (Rodríguez-Fernández et al., 2002; 

Merino-Tomé et al., 2009; Martín-González and Heredia, 2011a, b; Cámara, 2017; 

Cadenas et al., 2018). 

We present a detailed stratigraphic and tectonostratigraphic study of the late Variscan 

and first Alpine evolutionary phases of the Cantabrian Mountains. We apply a 

multidisciplinary approach to the study of several new outcrops in the central 

Cantabrian Mountains, including a borehole. We undertake sedimentological and 

petrological analysis of sedimentary, volcanic and volcanosedimentary rocks. Based on 

new palaeontological data, we are were able to characterize and date the Permian and 

Triassic lithostratigraphical formations. All these data make it possible to establish a 

comprehensive lateral control of these formations. Further, we use borehole-constrained 

2D seismic reflection data, obtained for oil and gas exploration purposes offshore, to 

interpret the central and western parts of the North Iberian platform. Based on our new 

data obtained, we provide a new lithostratigraphical and tectonic model for the Permian-

Triassic sedimentary record in the Cantabrian Mountains and discuss its main 

implications in the context of the whole Pyrenean-Cantabrian domain. 
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2. Geological setting 

The study area comprises the central part of the Cantabrian Mountains (Fig. 1a, b), 

crossing, from E to W, the northern Spanish provinces of Santander and Asturias and 

also the northern regions of Palencia and León. The area includes the highest summits 

of the Cantabrian Mountains, with several peaks exceeding 2,600 m. 

The Cantabrian Mountains represent the western part of the Pyrenean-Cantabrian 

orogen. According to the geological subdivision of the Cantabrian Mountains proposed 

by Martín-González and Heredia (2011a), the study area is flanked by the Vasco-

Cantábrica Region in the east and the Astur-Galaica Region in the west (Fig. 1a). The 

Vasco-Cantábrica Region is characterized by a thick and complete succession of 

Triassic to Cretaceous sediments deposited in a complex and highly subsident Mesozoic 

extensional basin showing episodic volcanism (Ubide et al., 2014) –the Basque-

Cantabrian Basin–. Mesozoic extensional structures were partially inverted during the 

Alpine compression regime (García-Espina, 1997; Pulgar et al., 1999) and the Mesozoic 

succession is locally detached above the Keuper facies' evaporites (e.g. Carola et al., 

2015; Cámara, 2017). To the south, these Mesozoic sediments overthrust the Cenozoic 

synorogenic sediments of the Ebro and Duero foreland basins. In contrast, in the Astur-

Galaica Region, Mesozoic sediments are absent or scarce; only in the eastern part of this 

region does a thin, fairly complete sequence crop out, corresponding to the so-called 

Gijón-Ribadesella Basin (e.g., Suárez-Rodríguez, 1988) or Asturian Basin (e.g., 

Lepvrier and Martínez-García, 1990; Uzkeda et al., 2016). The so-called Asturian Basin 

(Fig 1b, c) can be considered the western extensión of the Basque-Cantabrian Basin, 

since both are united in the offshore. In the southern mountain front, a thin (< 1 km) 

Albian to Upper Cretaceous layer crops out in the forelimb of the fault-propagation fold 

created above the frontal thrust (Alonso et al., 1996). In this region, the Alpine 

compression deformation affects the Palaeozoic Variscan basement (Iberian Massif), 

strongly deformed in Carboniferous and earliest Permian times. The Alpine deformation 

reactivates some Variscan and Mesozoic structures, and the Mesozoic cover is 

undetached (Fig. 2a, b). Cenozoic synorogenic sediments filled small isolated 

depressions, generating a compartmentalised, broken foreland basin (Martin-González 

and Heredia, 2011b; Martín-González et al., 2014). 

The Palaeozoic basement of the study area belongs to the foreland thrust and fold belt of 

the Variscan Orogen, which in this part of the Iberian Massif is known as the 
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Cantabrian Zone (Lotze, 1945; Julivert et al., 1972). The main deformation related to 

the Variscan Orogen ends in the latest Carboniferous and synorogenic sedimentation is 

well preserved in this zone (Julivert, 1971). The original Variscan structures were N-S 

trending along present-day coordinates, with general vergence to the east (Weil, 2006; 

Weil et al., 2012 and references therein). Subsequent N-S shortening between the early 

Kasimovian and early Gzhelian led the bending of the Variscan structures (highlighted 

by their arched traces in Fig. 2a) forming the Cantabrian Orocline in early Permian 

times (e.g. Gutiérrez-Alonso et al., 2012). At this time, the eastern part of the 

Cantabrian Zone (Picos de Europa Thrust System, Fig. 2a) was emplaced towards the 

south (Merino-Tomé et al., 2009) and its syntectonic sediments were deposited in the 

Pisuerga-Carrión Province Region (Fig. 2a, b). This Province constitutes the foreland 

basin of the whole Cantabrian Zone (Rodríguez-Fernández and Heredia, 1987; 

Rodríguez-Fernández et al., 2002). Finally, late Variscan faults developed at the 

Carboniferous-Permian boundary (Gzhelian-Asselian). These faults, mostly NW-SE 

strike-slip faults (e.g., the Ventaniella fault of Fig. 1a, b), crosscut the Cantabrian Zone 

affecting Palaeozoic structures. 

The Permo-Carboniferous tectonomagmatic pulse had a major impact on the crustal 

configuration of western and central Europe (Ziegler and Dèzes, 2006). Stephanian-

early Permian lithosphere wrench deformation in these areas caused general 

reorganization of the mantle convection system. As result, upwelling of the 

asthenosphere induced thermal thinning of the mantle-lithosphere and magmatic 

inflation of the remnant lithosphere accompanied by regional uplift (Ziegler and 

Stampfli, 2001). At the end of early Permian, isolated basins developed in western and 

central Europe (Fig. 3), and later generalized thermal relaxation of the lithosphere in 

these zones during the late Permian and Early-Middle Triassic allowed westward 

propagation of the Tethys rift system (Stampfli and Kozur, 2006). 

However, this orogenic collapse was not generalized in the Cantabrian Zone, since it 

corresponded to the foreland of the orogen, where the crust had thickened less (Pérez-

Estaún et al., 1991). This extensional collapse was accompanied by the development of 

narrow, isolated basins. These basins were controlled by reactivation of Variscan and 

late Variscan structures. Source areas were close and remained active throughout the 

Cisuralian (early Permian). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

The Triassic intracontinental extension must be associated with the onset of the northern 

Pangea break-up (Salas and Casas, 1993; Juez-Larré and Ter Voorde, 2009) that 

generally started in late Permian times (Ziegler and Stampfli, 2001) including the 

Iberian Peninsula (Sánchez-Martínez et al., 2012). In earliest Permian times this event 

generated the continental basins, NW-SE elongated and much more extensive than the 

Permian basins and with more remote source areas (Sánchez-Martínez et al., 2012). 

This rifting event ended in the Late Triassic-Early Jurassic (e.g. Ziegler, 1993). In the 

study area, a subsequent Late Jurassic to Early Cretaceous rifting period gave rise to the 

opening of the Bay of Biscay, which individualized the Iberian and the European plates 

(Boillot et al., 1979; Derégnaucourt and Boillot, 1982; García-Espina, 1997; Roest and 

Srivastava, 1991; Thinon et al., 2003; Sibuet et al., 2004; Tugend et al., 2014; Cadenas 

et al., 2018). Later on, a change to a convergent setting between the Iberian subplate and 

the European plate in the framework of the Alpine Orogeny led to the uplift of the 

Pyrenean-Cantabrian orogen along the Iberian/European plate boundary (e.g., Vergès 

and García-Senz, 2001; Pedreira et al., 2007; Roca et al., 2011; Martín-González and 

Heredia, 2011a, b; Teixell et al., 2018). Many of the former Variscan, late-Variscan and 

Mesozoic faults were reactivated/inverted during this orogenic event (Fig. 1a). The 

central Cantabrian Mountains uplift was essentially produced by thrusting developed 

over a long frontal ramp connected to a midcrustal detachment (Alonso et al., 1996). 

Here, the main episode of uplifting (responsible for the present-day relief) was late 

Eocene-early Oligocene in age (Martín-González et al., 2012, 2014; Fillon et al., 2016), 

lasting until latest Miocene times towards the western border of the range (Martín-

González et al., 2014; Martín-González and Heredia, 2011b and references therein). 

3. Methods 

Most of our work was based on the reconstruction and sedimentary interpretation of 

eight representative stratigraphic sections in the field. Their selection was based on  

preliminary detailed geological mapping and tectonic study to avoid repetitions due to 

faults and thrusts (Fig. 1b). To compare these sections with previous (classic) works, the 

geographic Asturian, Cantabrian and Palentian areas are also represented here in some 

figures. The first of these areas are onshore zones of the Asturias Basin, and the 

remaining two are the north and south domains of the western Basque-Cantabrian 

Basin, respectively. Stratigraphic sections were chosen as representative of these three 

main stratigraphic areas of the Cantabrian Mountains. In central Asturias, in Villabona, 
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north of Oviedo, where the vegetation cover hinders detailed fieldwork, a borehole 

(cuN-69B) obtained by courtesy of the MINERSA Group, allowed for a detailed study 

of the Permian-Triassic succession in this zone. The well is 674 m deep and shows 342 

m of Permian and Triassic rocks.  

In the 8 stratigraphic sections and the MINERSA borehole (Figs. 4, 5), we defined 

different facies and their associations, and 15 architectural elements representing the 

different depositional environments. To establish affinities of the associated volcanism 

and their relationships with the differentiated tectono-sedimentary pulses, mineral 

assemblages and rock textures were examined in a petrographic study of 24 samples 

from the Acebal section.  

Because of the scarcity of available data, we estimated the age of the studied 

lithostratigraphical formations according to palaeontological criteria. Nine new pollen 

assemblages obtained from nine different levels, fossil plants and footprints were 

collected and analysed, and these were complemented with samples recently examined 

by members of our research group (Juncal et al., 2016).  Palynological samples were 

processed using HCl-HF-HCl attack techniques as described by Wood et al. (1996). 

Prepared samples on thin-sections were studied under a Leica DM 2000 LED, and final 

selected photos were taken with a Leica ICC50 W camera. 

In addition to the fossil plant found in this work, a macroflora bibliographic compilation 

of all studies carried out in the study area was done in order to enhance the works 

published until today. Unfortunately, in most of these publications, the number of 

specimens that integrate these collections is not provided. 

In this work, the scarcity of footprints only allowed to compare them with other 

specimens of ichnogenus using photographs from other works, therefore, no 

morphological nor biometrical methods have been used. 

For a more complete study of Permian and Triassic sedimentary remnants in the 

northern Iberian Peninsula, structural fieldwork was carried out on the western side of 

the Basque-Cantabrian Basin, with special emphasis placed on determining the 

relationships between faults, their age, and their role in controlling Permian and Triassic 

deposition. For the sake of completeness, we also examined the stratigraphic records of 

two boreholes and 2D seismic reflection profiles offshore in the continental platform of 

the North Iberian margin: borehole Galicia-B2, drilled by Chevron in 1977, and 
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borehole Mar Cantábrico-K1, drilled by Shell in 1978 (borehole reports from Lanaja, 

2007; Gutiérrez-Claverol and Gallastegui, 2002 and Cadenas and Fernández-Viejo, 

2017).  

4. The Permian-Triassic stratigraphical formations 

The Permian and Triassic stratigraphy of the Cantabrian Mountains has been 

traditionally studied in three main sectors, broadly coincident with the geographic 

provinces in which this sedimentary record appears: Asturian, Cantabrian and Palentine 

sectors (Fig. 1a, b). Thereby, the general description of the stratigraphic units of the 

Cantabrian Mountains has been traditionally separated in different successions related to 

these areas. Subsequent studies defined numerous lithostratigraphical units and subunits 

(e.g. Suárez-Rodríguez, 1988, for the Asturian area, and Martínez-García, 1990, for the 

Cantabrian and Palentine areas), of local validity in some cases (Table 1). Although 

remarkable efforts have been made to correlate these units among the different areas 

(e.g. Martínez-García, 1991a, b; Gand et al., 1997; Martínez-García et al., 2001), the 

scarcity of palaeontological or radiometric data has hindered detailed correlations 

(López-Gómez et al., 2002). Moreover, some of the units have been erroneously 

correlated based only on lithological characteristics, such as the Arroyo and Sotres 

formations, or the Sagra and Caravia formations (Gand et al., 1997). Between the Sotres 

and Caravia formations, Martínez-García et al. (1991a, b) described the Cabranes 

Formation, also of early Permian age. Once again, this was only of local validity as it 

was based on lithological criteria alone and the unit was correlated with the Paraes and 

La Cuesta formations, described in the Peña Sagra area (Gand et al., 1997). 

The Caravia Formation, as discussed later, represents a clear example of erroneous 

assignment. Its age has been interpreted as both early and late Permian (Martínez-

García, 1991a, b) in the absence of palaeontological criteria. Moreover, the formation 

was correlated with other units of different areas in the Cantabrian Mountains (Gand et 

al., 1997), and even with Permian units in the Iberian Ranges (Martínez-García, 1991b), 

over 400 km away, in Central Spain. However, as discussed below, various pollen 

assemblages (this work) indicate a late Anisian-early Carnian (Middle-Upper Triassic) 

age for what has been considered the Caravia Formation in most of previous studies. 

Despite the initial lack of sufficient palaeontological criteria to define an accurate 

lithostratigraphical succession for the Permian and the Triassic sedimentary record in 
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the Cantabrian Mountains, interesting sedimentary descriptions are available, mainly for 

the Triassic records in the Cantabrian area (e.g., Smit, 1966; Saiz de Omeñaca, 1977; 

García-Mondejar et al., 1986, among others). The whole Triassic succession was named 

the Nansa Group by Maas (1974), including the classic Buntsandstein, Muschelkalk and 

Keuper facies. 

The Sotres, Peña Sagra-Cohilla and Ríocorvo stratigraphic sections have been described 

in the mentioned contributions, while the Villabona, Cicera, Carmona, Frieres, Acebal-

Pola de Siero and Rueda sections, as well as the Villabona borehole (Figs. 1b, 5) are 

firstly described in this work.  

To follow the International Stratigraphic Guide's recommendations, we have tried to 

keep the same names as defined by other authors as much as possible, although most  

original stratigraphic locations have now been changed based on the new 

palaeontological data. All units have a stratigraphic rank of formation. Other units that 

have not been formally described, or units that were erroneously repeated, are given 

different names and stratigraphic locations. From base to top, the formations we 

describe here are: San Tirso (St), Acebal (Ab), Sotres (So), Cicera (Ci), Rueda (Ru) and 

Transición (Tr) (Fig. 4). The San Tirso formation is Carboniferous-Permian in age, the 

Acebal and Sotres units are Permian and Cicera, Rueda and Transición formations are 

Triassic. 

Although most of the sections described lie directly on the basement and were chosen as 

the most complete in the areas examined, none of them show a complete vertical 

succession that includes all the units, with the Triassic sedimentary record eventually 

lying directly on the basement (Fig. 6a). 

The main characteristics of each of these six formations are: 

San Tirso Formation. The San Tirso Formation rests unconformably on the basement 

and is covered, also unconformably, by the Acebal Formation. This formation is 

comprised of sandstones, conglomerates and lutites and has interbedded, small coal 

beds in the basal part. This formation only appears in an isolated small basin that crops 

out in the southern part of the La Justa-Aramil Alpine syncline (Fig. 1b). 

The formation was first described by Velando et al. (1975) and ascribed an uncertain 

age between the uppermost Kasimovian (upper Stephanian C) and the Permian 
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(Autunian) (Wagner and Martínez-García, 1982). Later it was included in the Mestas de 

Con Formation by Martínez-García et al. (2001). Subsequent to this and according to 

more refined dates, Merino-Tomé et al. (2009) included the Mestas de Con Formation 

within the previously defined Cavandi Formation (Martinez-García, 1981). In the 

present study, we provide a different definition of the San Tirso Formation to Velando 

et al. (1975), as these authors included our Permian Acebal Formation within the top of 

this formation. Further, we separate the San Tirso Formation from the Mestas de 

Con/Cavandi Formation based on its distinctive age and tectonic and stratigraphic 

features. Thus, the Mestas de Con/Cavandi Formation is a marine (mainly turbidites) 

Late Carboniferous (late Kasimovian/early Gzelian) synorogenic succession (Merino-

Tomé, 2004; Merino-Tomé et al., 2006, 2007, 2009), which is intensely deformed by 

the Variscan Orogeny. In contrast, the San Tirso Formation is a latest Carboniferous-

earliest Permian (late Gzelian-early Asselian) continental succession (Fig. 4), slightly 

deformed by the Variscan orogeny (late-orogenic succession) and unconformably 

overlying the remaining Carboniferous rocks of the Variscan Cantabrian Zone. 

Acebal Formation. This unit is described here for the first time. Its section has been 

described near Acebal village (Asturian area), where it is 310 m thick, although the unit 

shows considerable lateral thickness variation. It lies unconformably on the underlying 

unit or directly on the basement. It basically consists of green volcanic and 

volcaniclastic rocks, red to green, medium- to coarse-grained sandstones, and red 

lutites. So far, these rocks have not been precisely dated, and their age attribution is here 

based on indirect criteria.  

Sotres Formation. This formation was described by Martínez-García (1981) near the 

village of Sotres (Fig. 1b). Later, the same author (1991a) considered the Sotres 

Formation as one of the three units making up the Permian "post-Hercynian" (post-

Variscan) sedimentary record, represented by the Sotres, Cabranes and Caravia 

formations. Following the criteria of this author, the two first formations comprised the 

Viñón Group, while the latter was equivalent to the Villaviciosa Group. The Sotres 

Formation lies unconformably on the Mestas de Con Formation (Martínez-García, 

1991a, b), the Acebal Formation or directly on the basement. This latter author, and 

previously Wagner and Martínez-García (1982), described this unit as an 8 m-thick 

sequence of volcaniclastics beds, thin coal seam layers, and up to 90 m thickness of 

alternating grey limestones and black shales with volcanic debris. These same authors 
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considered this formation could be as thick as 600 m in the Villaviciosa area. In our 

study, its total thickness appeared reduced to 34 m in the Sotres area. In other sections 

(e.g., Peña Sagra-Cohilla section, Fig. 1b) this formation is composed of medium- to 

coarse-grained sandstones in its lower part, and carbonate beds towards the top, where a 

large karst surface frequently develops (Fig. 6b).  

Cicera Formation. This formation, described here for the first time, is located near the 

village of Cicera (Cantabrian area; Fig. 1b), where it is 180 m thick, although it shows 

substantial lateral thickness changes. The Cicera Formation rests unconformably on 

different previous units, or directly on the basement (Fig. 6a). It represents the classical 

Triassic "Buntsandstein facies", as García-Mondejar et al. (1986) and Robles and 

Pujalte (2004) described in La Cohilla section, located in the upper part of our Peña-

Sagra-La Cohilla section (Fig. 1b). The Cicera Formation consists of alternating red, 

fine- to coarse-grained sandstones and dark red lutites. These sandstones are more 

frequent in the lower half of the unit, where thin rounded-clast conglomerate layers may 

also appear. The unit, however, has been often described as the Caravia Formation in 

different areas (or Villaviciosa beds in eastern Asturian Basin, e.g., Wagner and 

Martínez García, 1982), and considered lower or upper Permian (Wagner and Martínez-

García, 1982; Martínez-García, 1991a, b; Martínez-García et al., 1991; Mamet and 

Martínez-García, 1995; Martínez-García et al., 2001, among others). This 

misinterpretation has led to erroneous considerations when describing new stratigraphic 

units, e.g. correlating the well-dated early Permian Sagra Formation with the Caravia 

Formation (Gand et al., 1997), or even establishing equivalences between the Caravia 

Formation and other Permian units of Iberia and SW Europe (Martínez-García, 1991b). 

Rueda Formation: This unit, is also described here for the first time. The section was 

established near the locality of Rueda (Palentine area), where it reaches a thickness of 

3.5 m. It consists of grey and green marls in the lower part and ochre limestones and 

dolomites at the top. The unit is apparently transitional with the underlying Cicera 

Formation, whose sediments interrupt it. Thrusts usually affect the upper sedimentary 

record of this unit. 

Transición Formation: The name of this unit makes reference to the "transition" from 

the Upper Triassic to the Lower Jurassic sedimentary record. It was first defined as 

"Tramo de Transición" (transition section) by Suárez-Vega (1969, 1974) near 
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Villaviciosa (Fig. 1b). Later, Suárez-Rodríguez (1988) and Manjón et al. (1992) 

described it as Fuentes Unit and "Conjunto Superior", respectively, which were likely 

parts of the same facies in closeby areas. The unit mostly consists of red marls and from 

base to top has intercalated red sandstone, gypsum beds and limestone. Due to its 

changing character, it often shows an incomplete sedimentary record, and many reports 

have approached its age according to palaeontological data (e.g., Dubar el al., 1963; 

Martínez-García et al., 1998; De la Horra et al., 2012). Its thickness is difficult to 

estimate, but based on boreholes studies (Pieren et al., 1995, and this work's figure 4), 

we propose a variable thickness of 320 to 610 m. The unit rapidly loses thickness and 

disappears eventually towards the S, SE and E. It lies on different units, but always after 

an interruption in sedimentation.  

5. Sedimentology 

Sedimentological studies of the Permian and Triassic rocks in this part of the Cantabrian 

Mountains have yielded poor results. A few exceptions (e.g., García-Mondejar et al., 

1986) have focused on the sedimentology of Triassic continental deposits. Most prior 

reports describe the sedimentary record mostly in terms of their lithological 

composition, but lack detailed sedimentary interpretations. The present study thus 

provides the first comprehensive sedimentary analysis and interpretation of the studied 

units. Our analysis is based on facies differentiation in all the described series. The 

associations of these facies allow us to define architectural elements. An architectural 

element was defined by Miall (1985) as a component of a depositional system of a river 

equivalent in size to, or smaller than a channel fill, and larger than individual facies unit, 

characterized by a distinctive facies assemblage, internal geometry, external form and, 

in some instances, vertical profile. Fluvial facies and architectural elements have been 

mostly based on Miall's (1996, 2014) description and classification, while new codes 

have been adopted here for sediments of lacustrine, volcaniclastic and marine origin. 

The interpretation of the sedimentary environments and their vertical evolution in each 

defined unit is based on assigning these facies associations and architectural elements to 

the units. 

In total, we describe 15 architectural elements and interpret them according to their 

facies and facies associations (Fig. 7). Of these, 7 are of fluvial origin, 3 of lacustrine 

and playa-lake origin, 3 of volcaniclastic origin, 2 of shallow marine origin and 1 of 
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sabkha origin. Figure 8 includes the descriptions and interpretations of these elements 

with indication of the sections in which they were identified. The precise positions of 

the architectural elements in all the sections are detailed in figure 4 while some of the 

main representative elements observed in the field can be seen in figure 8. We describe 

the architectural elements identified in each of the stratigraphic units defined as fallow:  

San Tirso Formation: This formation includes elements GStp, Stp1, Lc1, Ls and Fl (Fig. 

8 m, n) interpreted as arising from the migration of linguoid dunes in fluvial channels 

related to distal alluvial fans, and overbank waning flood deposits with humid intervals 

when fine-bed coal deposits accumulated. It is generally composed of fining-upwards 

sequences thinner than 2.3 m thick where the uppermost part may be represented by 

marly lacustrine deposits or sandy to silty laminae of playa-lake deposits. This unit was 

deposited in an isolated small basin (Fig. 1b).  

Acebal Formation: This formation includes elements Vt, Vc, Ve, Vf, Fl, Ls, Fm, Stp2 

and GStp. Essentially, the formation consists of different types of volcaniclastic 

deposits accumulated during successive pulses (Fig. 8 j, k, l), similar to examples 

described by Lago et al. (2004a, b) and Perini and Timmerman (2008) in the eastern 

Pyrenees and Iberian Ranges. Interruption between volcanic pulses allowed for the 

development of small, mixed sandy and gravelly, braided fluvial systems with huge 

floodplain deposits in which roots and palaeosoils developed. The Acebal Formation 

was deposited in small, isolated basins bounded by active normal faults and (like in the 

rest of the Permian-Triassic lithostratigraphic units) rocks of this Formation were 

formed in arid conditions. 

Sotres Formation: This Formation is formed by elements Lc1, Lck, Fl, Stp1 and Gtp 

(Figs. 4, 7, 8 h). The formation records the development of small, mixed sandy and 

gravelly, braided fluvial systems with the build-up of fine deposits in floodplains. The 

sediments were overlain by the development of carbonate lakes (Fig. 8 h) that reached 

their main thickness in the central areas of the lakes (Kelts and Hsü, 1978; Cohen and 

Thouin, 1987). This latter phase of sedimentation was interrupted by exposure of the 

lake sediments and the development of various karst surfaces (Figs. 6 B, 12 i). 

Carbonated sediments of this formation were initially interpreted as marine deposits 

(Martínez-García 1991a, b; Martínez-García et al., 1991) but later considered to be 

continental in origin due to the presence of sponge-bacterial bafflestones harbouring 
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Bevocastria and ostracods, and the absence of marine microfauna and microflora 

(Mamet and Martínez-García, 1995). This formation probably represents the first 

Permian stage in which connections between some of the small extensional basins were 

established.  

Cicera Formation: This formation attains a greater thickness and shows a wider 

geographic distribution, probably reaching some hundred Km, than the previous units. It 

is comprised of the elements GStp, Gh, Gtp, Stp1, Stp2, Sm, Fl, Fm and Ls and 

generally shows a fining and thinning-upwards trend.  It records the development of 

mixed sandy and gravelly braided fluvial systems in the lower part of the formation (Fig 

8 b, d). These systems progress to an increase in floodplain deposits in the middle part 

(Fig. 8 e), which are the dominant sediments in the upper part of the formation (Fig. 8 f, 

g). Similar examples have been described by Gullifort et al. (2017) in the lower 

Beaufort Group of South Africa. The lowermost part of this formation only appears in 

the Peña Sagra-La Cohilla section (Fig. 4), where it represents longitudinal bedforms 

and sieve deposits related to proximal areas at the basin border (Fig 8 a). The uppermost 

part of this formation shows a transition with the overlying Rueda Formation, of 

shallow marine origin. This transition is indicated by the presence of Plaesiodictyon 

mosellanum (Fig 10, number 21), a fresh-water to shallow marine environment alga. 

The sedimentation of this formation indicates larger sedimentary basins, which 

developed in an active and generalized extensional context (García-Espina, 1997; 

Robles and Pujalte, 2014) with different pulses that allowed for deposition with 

considerable thickness variations.  In addition, a complete sedimentary record was only 

deposited in the most subsident depocenters, as described in the Early-Middle Triassic 

red beds of the Iberian Basin by López-Gómez et al. (2012).  

Rueda Formation: This formation is basically represented by element Sm (Fig. 8 o) and 

is interpreted as inter-supratidal, shallow-marine, mixed sediments, similar to the 

Middle-Upper Triassic shallow marine deposits described by Escudero-Mozo et al. 

(2017) on the island of Mallorca. The formation constitutes the first Mesozoic marine 

ingression in the ancient western Basque-Cantabrian intracontinental basin. It would 

represent a short incursion of the Tethys Sea that only reached the central and eastern 

continental areas of this basin. 
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Transición Formation: This formation is basically represented by the element Sbk. Its 

lithology and thickness may change depending on the area. In the Villabona borehole, it 

sometimes reaches a thickness of hundreds of metres.  However, due to tectonics, only 

isolated remnants under a few tens of metres crop out. In the Villabona borehole, marls, 

gypsum and dolomites tend to be the dominant lithologies upwards. This formation is 

interpreted as a continental-marine, transition environment at its base, evolving to 

marine sabkha deposits in its middle and upper parts. The dominant dolomite beds at the 

top of this formation are of Lower Jurassic age (Barrón et al., 2006) and represent the 

end of the Triassic extensional period; their study is, however, beyond the scope of this 

work. 

6. Palaeontological data and age of the formations 

The scarce palaeontological data found for the Permian and Triassic rocks preserved in 

the Cantabrian Mountains is the main reason for the uncertainties arising in the 

definitions of these lithostratigraphic formations in the past and their correlations with 

adjacent areas. The data provided here are based on the findings of palynological, 

macroflora and footprints studies (Table 2). According to these data, we were able to 

more accurately determine the age of the identified formations (Fig. 9), as well as 

discuss prior time constraints obtained without palaeontological criteria. 

6.1 Palynology  

The Permian and Triassic palynological record in the Cantabrian Mountains is scarce. 

For the Permian, only one sample recently yielded a positive result in the Sotres 

Formation (Fig. 9), enabling the adscription of a Kungurian age (early Permian) to this 

formation (Juncal et al., 2016). This association (SO1) is the only one of Permian age 

described to date in the Cantabrian Mountains.  

Some palynological assemblages in the Triassic record have been described, although 

few show specimen figurations. The oldest ones were obtained in the upper 

Buntsandstein facies, here described as Cicera Formation, near the village of Verbios 

(Palentine Province, sample 1349) and Tres Mares peak (Cantabrian Province, samples 

1379 and 1410) (Sánchez-Moya et al., 2005; Sopeña et al., 2009). Samples 1349 and 

1410 were attributed to the Ladinian (Middle Triassic), while sample 1379 was assigned 

to the Carnian (Late Triassic). According to an analysis of samples detected in marls 
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and gypsum levels (Keuper facies) in Aguilar de Campoo (Palentine Province), which 

are probably time-equivalent to the above mentioned Transición Formation, we assign a 

Norian age (Late Triassic) to these facies, as suggested by Salvany (1990a, b). Later 

Calvet et al. (1993) obtained an early-middle Norian age for a pollen sample from a 

similar facies near Reinosa (Cantabrian Province). Also in similar facies, Barrón et al. 

(2001) assigned a late Carnian to early Norian age to laminated gypsum samples near 

Poza de la Sal (Cantabria Province).  

In the Transición Formation, near Huerces (Asturian Province), Martínez-García et al. 

(1998) obtained a late Rhaetian age for one analysed sample. In this same unit, Barrón 

et al. (2002, 2005, 2006) described a Rhaetian age based on several different samples. 

We obtained six positive pollen samples in the studied formations (Fig. 9): San Pedro 5 

(SP5), Carmona 1 (Ca1), Cic11, Cic12, VBO17 and Cueli 1 (Cu1). The oldest Triassic 

palynological assemblages were from the Cicera Formation in the Carmona section 

(Fig. 9, Table 2): samples SP5 and Ca1. These two samples show very similar 

associations represented by Camerosporites secatus Leschik 1956, Chordasporites 

singulichorda Klaus 1960, Duplicisporites granulatus (Leschik) Scheuring 1970, 

Illinites chitonoides Klaus 1964, Lunatisporites noviaulensis (Leschik) Jersey 1979, 

Microcachryidites doubingeri Klaus 1964, Microcachryidites fastidioides (Jansonius) 

Klaus 1964, Ovalipollis pseudoalatus (Thiergart) Schuurman 1976, Triadispora crassa 

Klaus 1964, Triadispora falcata Klaus 1964, Triadispora plicata Klaus 1964, 

Triadispora staplinii (Jansonius) Klaus 1964, Triadispora suspecta Klaus 1964 and 

Triadispora verrucata (Schulz) Scheuring 1970. (Fig. 10, numbers 1, 2, 3, 4, 6, 7, 8, 9, 

10, 11, 12, 15, 16, 17). The presence of typical Middle Triassic taxa as Lunatisporites 

noviaulensis, Illinites chitonoides, Microcachryidites doubingeri, and 

Michrocachryidites fastidioides, together with circumpollen species, that diversified 

during late Ladinian (e.g. Kürschner and Herngreen, 2010; Juncal et al., 2018), all 

indicate a Longobardian age (late Ladinian).  

Samples Cic11 and Cic12 were obtained near the sample collected from the Cicera 

Formation, in the Cicera Section (Fig. 9, Table 2). They are represented by 

Camerosporites secatus Leschik 1956, Duplicisporites granulatus (Leschik) Scheuring 

1970, Chordasporites singulichorda Klaus 1960, Ovalipollis pseudoalatus (Thiergart) 

Schuurman 1976, Patinasporites densus Leschik 1955, Triadispora crassa Klaus 1964, 
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Triadispora epigona Klaus 1964, Triadispora falcata Klaus 1964, Triadispora plicata 

Klaus 1964, Triadispora staplinii (Jansonius) Klaus 1964, Vallasporites ignacii Leschik 

1956, and Plaesiodictyon mosellanum Wille 1970 (Fig. 10, numbers 1, 2, 3, 4, 5, 8, 13, 

14, 15, 16, 17, 21). The presence of Chordasporites singulichorda, Triadispora spp. and 

the circumpollen species together with Patinasporites densus and Vallasporites ignacii, 

that have their first appearance in the base of early Carnian (e.g. Van der Eem, 1983; 

Kürschner and Herngreen, 2010) would indicate a Longobardian - Cordevolian 

transition (Ladinian - early Carnian). 

Sample VBO17 was obtained from the Villabona borehole in the Transición Formation 

(Fig. 9, Table 2). It is represented by Camerosporites secatus Leschik 1956, 

Classopollis zwolinskae (Lund) Traverse 2004, Classopollis torosus (Reissinger) Balme 

1957, Duplicisporites granulatus (Leschik) Scheuring 1970 and Rhaetipollis 

germanicus Schulz 1967 (Fig. 10, numbers 15, 17, 18, 19, 20). Although Rhaetipollis 

germanicus was considered a Rhaethian age taxon (Visscher and Brugman, 1981; 

Schulz and Heunisch, 2005), the ammonoid-dated Norian palynomorph assemblages of 

Svalbard provided constraints for a Norian first appearance of this taxon (Smith 1982; 

Cirilli, 2010). Therefore, we suggest Lacian-Aulanian age (early-middle Norian) to 

VBO17 assemblage because the first appearance of Classopollis spp. is during early 

Norian, and the taxa Duplicisporites granulatus and Camerosporites secatus are not 

registered in middle-late Norian assemblages (Visscher and Brugman, 1981; Kürschner 

and Herngreen 2010; Kustatscher et al., 2018). 

Finally, the scarce poorly-preserved assemblage of sample Cu1 was obtained near 

Cueli, west of Villaviciosa (Fig. 2). This assemblage is composed of Classopollis spp. 

and Ovalipollis pseudoalatus (Thiergart) Schuurman 1976 and attributed a Norian-

Rhaetian age (Kürschner and Herngreen, 2010).  

6.2 Macroflora 

Up until few years ago, no Triassic floras had been described in the Cantabrian 

Mountains, and all studies made reference to Permian assemblages. Permian floras had 

been described as "Autunian". However, Autunian is a discussed term, as it mostly 

refers to the early Permian (Cisuralian), yet such “Autunian flora” was described in 

upper Stephanian rocks (Gzhelian, late Carboniferous). For this reason, some authors 

(e.g., Martínez-García et al., 1991) also use the term "Stephanian-Autunian", and others 
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(e.g., Wagner and Álvarez-Vázquez, 2010) propose including the “Autunian regional 

substage” in the Gzhelian (Late Pennsylvanian). However, recent absolute age data 

(Michel et al., 2015; Pellenard et al., 2017) indicate an Asselian age (early Permian; 

Pellenard et al., 2017) for the Autunian sedimentary record of the Autun Basin (SE 

France), and Sakmarian and Sakmarian/Artinskian transition ages (early Permian; 

Michel et al., 2015) for the Tuilières–Loiras and Viala formations in the Lodève Basin 

(S France) respectiverly. 

Patac (1920) described the first Permian macroflora in the Cantabrian Mountains near 

Pola de Siero (Asturian Province) including Walchia piniformis von Schlotheim; 

Walchia hypnoides Brongniart, Callipteris conferta (Stenberg) Brogniart (=Autunia 

conferta (Sternberg) Kerp), Dicksonites sp. and Pecopteris sp. Later, Wagner and 

Martínez-García (1982) described an early Permian macroflora near Villaviciosa 

comprising Lebachia parvifolia Florin (= Culmitzschia parvifolia (Florin) Kerp & 

Clement-Westerhof), cf. Callipteris conferta (Stenberg) Brongniart (=Autunia conferta 

(Sternberg) Kerp), Taeniopteris cf. fallax Goeppert and Neuropteris neuropteroides 

(Goeppert) Barthel. 

Further, Gand et al. (1997) described a fragment of Supaia sp. near Pico Paraes, in the 

Peña Sagra area (Fig. 1b). Although these beds were erroneously considered as part of 

the Caravia Formation by Martínez-García (1991a), data obtained from footprints 

allowed Gand et al. (1997) to ascribe these beds to an Artiskian - Kungurian age (early 

Permian). In the present study, these beds are considered part of the Sotres Formation. 

Moreover, we identified a new Supaia sp. specimen (Fig. 11) in the middle part of the 

Sotres Formation (Fig. 9, and sample Sagra 3 in Table 2), in the same section and 

probably equivalent beds to the ones described by Gand et al. (1997). 

Finally, Wagner and Martínez-García (1982), Martínez-García (1991) and Wagner and 

Álvarez-Vázquez (2010) described a fossil flora in the lower part of the San Tirso 

Formation (Fig. 9) constituted, among others, of Neuropteris cf. neuropteroides 

(Göppert) Zeiller, Neuropteris pseudoblissii Potonié, Linopteris gangamopteroides (de 

Stefani) Wagner, Callipteridium gigas (von Gutbier) Weiss, cf. Pseudomariopteris 

polymorpha (Zeiller) Danzé-Corsin, cf. Polymorphopteris polymorpha (Brongniart) 

Wagner, Calamites sp. This flora is considered to indicate a "Stephanian C or lower 

Autunian" age.  
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6.3 Footprints 

Permian vertebrate footprints were first described in detail in the Cantabrian Mountains 

by Gand et al. (1997) in Pico Paraes, near Peña Sagra (Fig. 1b), where these authors 

described the presence of Hyloidichnus major and Limnopus in the middle part of what 

is here designated the Sotres Formation. This unit, as discussed above, has been 

erroneously correlated with the Caravia Formation (Martínez-García, 1991a). The age 

ascribed to this formation has changed several times (Wagner and Martínez-García, 

1982; Martínez-García, 1991a, b; Martínez-García et al., 1991; Mamet and Martínez-

García, 1995; Martínez-García et al., 2001, among others). In the present work, the 

footprints described by Gand et al. (1997) are considered as belonging to the lower-

middle part of the Sotres Formation. Based on the occurrence of Supaia and 

Hyloidichnus major in nearby beds, Gand et al. (1997) interpreted those beds as 

Artinskian, or even Kungurian. Here, we also note the presence of Varanopus cf rigidus 

(Gand, 1987) (Fig. 12 A, and sample Sagra 2 in Table 2), in lateral equivalent beds of 

the neighbouring Peña Sagra section (Fig. 9). This latter track can be linked to 

quadrupedal, digitigrad Capthorhinidae trackmakers. Similar tracks have been observed 

in St-Affrique, Lodève and Le Luc, in Provence, SE France, and recently attributed an 

Artinskian to Capitanian age by Laurent et al. (2015). 

Demathieu and Sainz de Omeñaca (1990) described a Triassic foot-hand pair of 

Rhynchosauroides in northern Peña Sagra, without providing a clear geographic 

location. These rocks are both clearly within the Cicera Formation and geographically 

close to the described Carmona section. In the Cicera section of this same formation, we 

present two other footprints (Figs. 4, 9) that could correspond to Lagerpetidae (Fig. 12 

B, and sample Cic x in Table 2). These footprints have been identified through the 

presence of a few bones of Ladinian age in Argentina and have been denoted 

Coelurosaurichnus, and not Grallator, because of significant differences between the 

two ichnotaxa (Demathieu and Gand, 2005). The footprints have been linked to biped 

animals according to their functional tridactyl II-IV pes, similar to numerous tridactyl 

footprints of dinosauroïd forms found in Anisian-Ladininan beds in SE France 

(Demathieu and Gand, 2005). 

7. Permian volcanism  
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The Permian volcanism of this sector is well-represented in the Acebal area (Fig. 4). 

Outcrops show a wide range of volcaniclastic rocks interbedded in the Permian 

sedimentary series. 

Two types of volcaniclastic deposits are exposed: pyroclastic surge and ash fallout 

deposits. Pyroclastic surge deposits include levels of coarse tuff and tuffaceous 

sandstone ranging in thickness from 5 cm to 5 m (Fig. 13A). In general, the whole series 

is characterised by coarse bedding with normal grading of pyroclast sizes. Individual 

levels have internal laminations or show alignments of pyroclasts. These are subangular, 

equant to elongated in shape, with sizes as large as 2 mm. The deposits are medium to 

poorly sorted, heterogeneous with variable proportions of juvenile fragments, cognate 

lithic pyroclasts, crystals, clastic fragments of sedimentary origin and glass shards. No 

welded fragments or fiamme structures have been identified. 

Juvenile fragments are vesicle-poor and glassy, ranging from 2 µm to 2 mm. They are 

composed of ferromagnesian or feldspar microphenocrysts embedded in a fine-grained, 

hypocrystalline matrix with abundant opaque minerals and glass (Fig. 13B). 

Cognate, lithic fragments are partially altered porphyritic andesites. These fragments 

contain phenocrysts of plagioclase and minor proportions of amphibole and/or biotite. 

Two subtypes have been identified depending on the modal proportion and composition 

of the ferromagnesian phenocrysts: a) amphibole-bearing andesites with rare pyroxene 

(Fig. 13C), and b) biotite-bearing andesites (Fig. 13D). Both types also contain feldspar 

microliths, quartz and magnetite in their groundmass. Apatite and zircon occur as 

accessory phases. The groundmass varies from felsitic to vitrophyric and usually shows 

quartz- or chalcedony-filled amygdales.  

Isolated and partially broken igneous crystals similar to those in the cognate lithic 

fragments are common. Glassy fragments are scarce and small. The sedimentary 

components are subrounded quartz and feldspar and rare mica crystals. Their 

proportions vary although they increase towards the top of the Acebal Formation. In 

addition, juvenile crystals comprise mostly feldspars, altered amphibole and/or biotite.  

The Acebal Formation ends with a 5 cm-thick ash layer interbedded with sedimentary 

levels (Fig. 13E). This deposit shows well-defined internal lamination, contains 
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abundant vitric shards and quartz crystals (Fig. 13F) and is interpreted as an ash fallout 

distal deposit. 

This volcanism shows an intermediate composition (andesites to dacites) with a mineral 

assemblage typical of subalkaline geochemical affinities, mainly calc-alkaline (Irvine 

and Baragar, 1971; McBirney, 1984). Late-Variscan calc-alkaline magmatism has been 

reported in the Palaeozoic basement in the Pyrenees, in the Iberian Chain (Castro et al., 

2002 and references therein) and in the Cantabrian Mountains (Corretgé et al., 2004; 

Gallastegui et al., 2004 and references therein). In the Pyrenees, plutonic massifs 

predominate and volcanic successions with pyroclastic deposits restricted to the Central 

Pyrenees. These successions range widely in age from Pennsylvanian to Cisuralian (e.g. 

Pereira et al., 2014 and references therein), and are mainly composed of ignimbrites and 

rhyolites (e.g., Castro et al., 2002; Pereira et al., 2014). In contrast, the volcanism 

studied here shares physical and compositional features with the Permian calc-alkaline 

outcrops of the Iberian Chain (Lago et al., 2004a, b and references therein) and with the 

post-orogenic magmatism which intrudes in the Variscan basement of the Cantabrian 

Mountains (Corretge et al., 2004; Gallastegui et al., 2004 and references therein). The 

age of volcanism in the Iberian Chain is mainly Sakmarian (Lago et al., 2004 a, b and 

references therein; Perini and Timmerman, 2008) while the postorogenic Variscan 

magmatism of the Cantabrian Mountains is Asselian-Sakmarian, and mainly Asselian in 

the eastern Astur-Galaica Region (Gallastegui et al., 2004) of our study area. 

Accordingly, we propose an Asselian (up to Sakmarian), tentative age for the Permian 

magmatism of the Acebal Formation. Specific radiometric ages will be needed to verify 

this hypothesis.  

8. Offshore data. Permian and Triassic remnants in the central and western North 

Iberian continental platform (southern Bay of Biscay) 

Identification of the Permo-Triassic rift within the continental platform of the 

North Iberian margin offshore is a challenge due to the scarcity of direct data and the 

complexity and scattered outcrops of the Permian and Triassic onshore (Cantabrian 

Mountains), which make correlations unaffordable towards offshore domains (Fig. 14). 

Moreover, overprinting of Permo-Triassic rifting by the subsequent Late Jurassic to 

Early Cretaceous rift event (e.g., Boillot et al., 1979; Derégnaucourt and Boillot, 1982; 

Tugend et al., 2014; Cadenas et al., 2018) limits its recognition in the central North 
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Iberian platform, its westernmost area being the least affected (Cadenas et al., 2018). 

Despite these hurdles, halokynetic-related structures and diapirs emerging from the 

rising and squeezing of Triassic evaporites during the Mesozoic and Cenozoic tectonic 

events have been interpreted for the whole margin, especially within the offshore 

Asturian Basin (Cadenas and Fernandez-Viejo, 2017; Zamora et al., 2017) and in the 

Parentis Basin, located in the continental platform of the southeastern Bay of Biscay 

(Ferrer et al., 2008; Jammes et al., 2010). 

All this considered, direct offshore remnants of the Permo-Triassic rift are restricted to 

the Triassic deposits recovered by the Galicia-B2 and the Mar Cantábrico-K1 

exploration boreholes in the western and central North Iberian continental platform, 

respectively (Fig. 14). Borehole Galicia-B2 was drilled by Chevron in 1977 in the 

exploration lead Galicia-B and borehole Mar Cantábrico-K1 was drilled by Shell in 

1978 in the exploration lead Mar Cantábrico K (Borehole reports: Lanaja, 2007; 

Gutiérrez-Claverol and Gallastegui, 2002).  

In the western North Iberian continental platform, borehole Galicia-B2 at a longitude of 

6.55ºW (Fig. 14), recovered, from top to bottom: 387 m of sandy mudstones and 

sandstones, 669 m of massive limestones with local relicts of fossil fragments, including 

algae, foraminifera, megafossils and lithic material, and 107 m of a red bed sequence 

composed of siltstones and shales (Fig. 15A). At the measured depth, the borehole 

drilled uniform and massive black shales affected by low-grade Variscan 

metamorphism. The palaeontological report provided with the well record tentatively 

suggests a Lower Cretaceous age, between the Aptian and Neocomian, for the massive 

limestones, based on the presence of foraminifera forms such as Pseudocyclamina sp., 

Choffatella sp., Trocholina sp., Tritaxia sp., and algae like Mithocodium. The 

continental red beds, which do not include flora or fauna, have been ascribed to the 

Triassic or older age, relying on their lithological features. Finally, a Middle Ordovician 

to Silurian age is proposed for the lowermost dark shales, based on the presence of the 

Cyathochitina sp. chitinozoan. Seismic to well ties revealed that the borehole was 

drilled in the hinge of an Alpine anticline, located in the southernmost part of the 

continental platform (Fig. 15A). The top of the seismic basement appears at about 1 s 

TWT and corresponds to the Palaeozoic. In seismic profiles, the Triassic and Aptian-

Neocomian series comprises an undifferentiated, parallel-layered sedimentary infill, 

affected by minor normal faults. Sediments are interpreted as part of the pre-

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

hyperextension and post-hyperextension units developed prior to and after the Late 

Jurassic to Early Cretaceous rift event respectively (Cadenas et al., 2018). 

In the central North Iberian continental platform, borehole Mar Cantábrico-K1, at 

longitude 5ºW (Fig. 14), drilled a heterogeneous sedimentary sequence (Fig. 13B). In 

the uppermost part, the borehole recovered 623 m of Aptian to Barremian sandstones 

with interbedded limestones and claystones. These detritic deposits overlie a 405 m-

thick heterogeneous unit assigned to the Neocomian. Underlying these Neocomian 

sediments, the borehole recovered drilled 26 m of evaporites, 514 m of Valanginian to 

Kimmeridgian claystones, siltstones, limestones and sandstones, and 224 m of azoic red 

claystones harbouring siltstones and sandstones, considered equivalent to the base of the 

Purbeck facies. Marine Liassic limestones overlie more than 600 m of Triassic deposits 

composed of two different lithostratigraphical units. The upper unit includes more than 

409 m of azoic anhydritic dolomites with claystones, considered as “Carniolas”, with an 

estimated age between the Raethian and Hettangian. The second unit comprises 248 m 

of anhydritic red claystones with sandstones and siltstones from the "Keuper facies". 

This level includes some limestones interbedded at the base, ascribed to the 

"Muschelkalk facies", which unconformably overlie massive Namurian limestones, and 

sandstones and siltstones of the Middle Carboniferous. According to the interpretation 

of seismic profiles, this sequence was drilled southwards of the major, south-dipping, 

inverted normal fault F1 (Fig. 15B). This fault limits southwards the main depocentre of 

the offshore Asturian Basin (Cadenas and Fernández-Viejo, 2017). Palaeozoic and 

Triassic sediments form the acoustic basement and are overlain by a pre-hyperextension 

unit including the Lower Jurassic “Liassic” limestones (Fig. 15B). This unit developed 

before the Late Jurassic to Early Cretaceous rift event, when the thick syn-

hyperextension unit, corresponding to the Purbeck and Neocomian sediments, filled the 

Asturian Basin (Cadenas et al., 2018). 

We should highlight the lack of flora and fauna within the red beds interpreted as 

Triassic in the two available boreholes. In the absence of time constraints, and 

considering the uncertainties of Permian and Triassic datings derived only from facies 

correlations (e.g., Wagner and Martínez-García, 1982; Martínez-García, 2004), the 

precise age of these units remains unclear. If we interpret these drilled red beds as 

Triassic, it is important to stress the lack of Permian deposits within the two 

stratigraphic records available offshore. Thus, in the Mar Cantábrico K1 borehole, 
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carbonates attributed to the "Muschelkalk facies" (the Rueda Formation in this work of 

middle Carnian age) overlie the Palaeozoic (Carboniferous) basement, while in the 

borehole Galicia B2, an undifferentiated Triassic facies overlies a pre-Carboniferous 

Palaeozoic basement. Most of the Triassic sediments correspond to anhydritic "Keuper 

facies" (upper part of the Transición Formation in this work, of Norian-Rhaetian age) 

which are thicker in borehole Mar-Cantábrico K1, located on the central North Iberian 

platform. Within this area, diapirs arising from Triassic salt horizons during subsequent 

tectonic events have been identified. Boillot et al. (1979) was the first to propose the  

occurrence of diapirs in this zone. Cadenas and Fernández-Viejo (2017) confirmed their 

relevance and interpreted several diapiric structures throughout the continental platform, 

with some diapirs particularly associated with the major, inverted, normal fault that 

limits the basin to the south. Cadenas (2017) defined different structural segments 

within the offshore Asturian Basin from west to east and a linked particular distribution 

of salt-related structures. Zamora et al. (2017) also differentiated eastern and western 

salt domains within the offshore Asturian Basin, so it is possible that some structural 

differences arose during the first Permian-Triassic extensional phases. 

Based on the interpretation of all the available boreholes and 2D seismic reflection 

profiles, Cadenas et al. (2018) recently interpreted the Triassic in the western North 

Iberian platform as part of a pre-hyperextension unit developing prior to the Late 

Jurassic to Early Cretaceous rift. This basin developed on top of a thick basement 

belonging to a proximal domain. This implies that the basin developed mainly through 

stretching processes which modified the Variscan basement of western Iberia. Towards 

the east, in the central margin, Triassic sediments are interpreted as part of the acoustic 

basement within the necking domain (Cadenas et al., 2018), appearing as an area 

showing a crust thickness reduction of about 10 km. In this domain, sediments 

deposited during Permian-Triassic rifting are preserved but overprinted by the thick 

syn-hyperextension unit that developed during the Late Jurassic to Early Cretaceous rift 

event. 

9. Tectonosedimentary evolution 

The evolution of the Cantabrian Mountains during the end of the Variscan cycle and 

beginning of the Alpine cycle has been little studied, due to the scarce data on the age, 

sedimentary environment and structure of the Permian and Triassic. Based on new data 
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from this study, we can propose a first approach to the tectonosedimentary evolution of 

this zone during Permian-Triassic times. This period is related to intense tectonic 

activity interrupted by periods of stability that could amount to tens of Ma. As a result, 

Permian-Triassic sedimentary refill is recorded in five tectono-sedimentary units (TSU 

I-V) (Fig. 9). 

During the Gzhelian (uppermost Carboniferous) and probably also during the earliest 

Asselian (lower Permian, age of the first post-Variscan intrusions), the last structures 

related to the Variscan Orogeny were generated. These structures are NW-SE trending 

strike-slip faults with a dextral component that have traditionally been called “late 

Variscan” faults (Arthaud and Matte, 1975, 1977). Rodríguez-Fernández and Heredia 

(1987) relate the late Variscan faults with the final phases of closing of the Cantabrian 

Orocline (Asturian Arc), which can not continue to progress through thin-skinned 

tectonics. In this way the late Variscan faults must have accommodate the last Variscan 

shortening. In some cases, the movement of these late Variscan faults induced the 

reactivation of Variscan thrusts, such as the NE-SW La Peña fault or the SW-NE to E-

W Liébana fault (Fig. 1b). Many syntectonic sediments linked to this final episode of 

the Variscan Orogeny are usually not preserved, but the San Tirso Formation (Velando 

et al., 1975), which is late Gzhelian - Asselian in age, can be associated with this event 

and here represents the unit TSU I (Fig. 9). 

In the early Permian (Asselian), the Variscan belt collapsed, generating narrow and 

isolated basins (Fig. 16). These basins, which were controlled by reactivation of 

Variscan and late Variscan structures, had close source areas and remained active 

throughout most of the Cisuralian. As result of this activity, units TSU II and III 

developed (Fig. 9). Basins controlled by the reactivation of Variscan structures run in a 

NE-SW direction, such as the La Camocha, La Justa-Aramil and Villaviciosa basins (B, 

C and D in Fig. 16), to E-W, like the Sotres-La Hermida basin (E in Fig. 16). Basins 

associated with the reactivation of Late Variscan structures trend in a NW-SE direction, 

such as the Villabona, Cueto Turis, Peña Sagra and Peña Labra basins (A, F, G and H, 

respectively, in Fig. 16). The extensional regime generated a calc-alkaline magmatism 

that produced volcanic rocks (Acebal Formation, TSU II) interbedded in the 

sedimentary Permian sequences (Suárez-Rodríguez, 1988; Valverde-Vaquero, 1992) 

and a large number of small plutonic intruded bodies of Asselian age in close proximity 

to late Variscan faults (Gallastegui et al., 1990) (Fig. 16). In relation to the early 
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Permian extension, a subhorizontal cleavage cutting the Variscan structures developed, 

especially in the Carboniferous rocks (mainly slates) of the Pisuerga Carrión Region 

(Aller et al., 2004).  

Extensional activity resumed in the Middle Triassic (Ladinian), which means that 

during more than 30 Myr there were no deposits in the study area. This gave rise to 

deep karstification of Palaeozoic limestones (well-developed in the Picos de Europa 

area) and of the lacustrine carbonates representing the last Permian deposits (Sotres 

Formation; Figs. 6B, 9), prior to deposition of the Middle Triassic rocks. At this time, 

related basins are more extensive, as shown by the Cicera Formation (TSU IV) (Fig. 9) 

with its far away source areas (Sánchez-Martínez et al., 2012) and thicker sedimentary 

infill (Fig. 17). In the study area, two basins developed, although isolated in time and 

space: the Corrales-Aguilar sub-basin in the SE (B in Fig. 17), active from the Middle 

Triassic (late Anisian), and the Gijón-Villaviciosa sub-basin in the NW (A in Fig. 17), 

active only during the Late Triassic (Norian-Rhaetian) and represented by the 

Transición Formation (TSU V) (Fig. 9). These basins were separated by a horst (Cuera 

high) in which there was no sedimentation in Permo-Triassic times (Fig. 17). In this 

area, the latest Lower Cretaceous sediments (Aptian) overlie Palaeozoic rocks 

(Martínez-García, 1980; Navarro, 1984). Both the Corrales-Aguilar and Gijón-

Villaviciosa sub-basins seem limited to the SW by the Ventaniella fault, although some 

Triassic deposits were found offshore in the borehole GAL-B2 (Fig. 15), to the west of 

the trace of the Ventaniella fault. 

The Gijón-Villaviciosa sub-basin was quite symmetrical during the early Triassic, while 

the Corrales-Aguilar sub-basin had its depocentre displaced towards its easternmost 

zone. During the Middle and Late Triassic, the southern Corrales-Aguilar sub-basin 

corresponds to a semigraben (García-Espina, 1997) related to the Ventaniella fault (Fig. 

17), which extends to the N until the Cuera fault (Figs. 1b, 17). However, the basin had 

a depocentre in the eastern middle part of this semigraben, a symmetrical sub-graben 

formed between the Pantrieme and Cuerres faults (García-Espina, 1997) and bounded to 

the E by the San Carlos fault (Fig. 17). This sub-graben displays the maximum 

thickness of the Middle-Late Triassic lithostratigraphic units (Fig. 4). The San Carlos 

and San Vicente-Besaya faults delimit areas with different number and geometry of 

normal faults, so they can be interpreted as extensional transfer faults, produced by the 

reactivation of NW-SE late Variscan structures. During the Late Triassic, the basin was 
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strongly compartmentalized, showing several depocenters related to different normal 

faults. To the east of the San Vicente-Besaya fault, the thickness of the Late Triassic 

evaporite deposits increases, allowing for the development of diapirism, which is 

generally scarce in the Corrales-Aguilar sub-basin. Evaporites are absent in the onshore 

Gijón-Villaviciosa sub-basin (Fig. 17), although these have been described in its 

offshore continuation to the east (Fig. 15). 

Offshore, Triassic sediments are preserved in the southernmost area of the continental 

platform. Triassic units correspond mainly to anhydritic Keuper facies (Transición 

Formation), which are thicker in borehole Mar-Cantábrico K1, in the central North 

Iberian platform, where diapirs arising from Triassic evaporates through zones of 

tectonic weakness lineaments are quite frequent in some areas (CS01-135, Fig. 15). In 

the western continental platform, the early phases of development of the NW-SE basin 

identified can be ascribed to the Triassic (Cadenas et al., 2018) according to the Triassic 

sediments recovered by borehole Galicia-B2 southwards. However, the lack of data 

precludes further interpretations of the relevance of Triassic events in shaping the 

offshore Asturian Basin (Fig. 15). 

10. Discussion 

Through geological mapping and sedimentological and petrological studies we have 

been able to characterize the lithostratigraphical formations described here. Further, for 

the first time, new palaeontological data serve to assign a direct age to all formations 

except the Acebal (volcanic) Formation. However, as discussed above, an Asselian-

Sakmarian age is estimated for this formation based on the composition of its 

magmatism, and also considering its stratigraphic position, in between units of well-

established age (Fig. 18). 

Our multidisciplinary approach has made it possible to identify a late-Variscan 

tectosedimentary phase (latest Carboniferous-earliest Permian), other post-Variscan 

phases (lower Permian extension) and one last phase at the beginning of the Alpine 

cycle (Middle-Late Triassic extension). The Permian extensional event is related to the 

collapse of the Variscan orogeny, whereas the Triassic event is related to rifting (Pangea 

break-up). There is a gap of 30 Myr between these two events. It is worth noting that 

previous works have usually evoked a single extensional Permian-Triassic rifting event. 
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This new stratigraphic arrangement provides insight into the lithostratigraphical units 

established to date. Thus, some units have been ruled out as they have been defined 

differently in the sedimentary record and with different ages. The latter is the case of the 

San Tirso Formation (Figs. 1b, 4); our new geological mapping separates this formation 

from the overlying Acebal Formation, whose base is Asselian. Moreover, the location of 

fossil floras (Wagner and Martinez-Garcia, 1982) near its base, serves to assign to this 

formation a “Stephanian C age”, although its upper portion could reach the Asselian. 

This age, together with its basal unconformity, the scarcity of Variscan deformation and 

its continental character, make the San Tirso Formation an exception in the Variscan 

succession of the Cantabrian Mountains, which can be related to the Late Variscan 

deformations. 

The Caravia Formation (Fig. 18), has been considered early Permian, middle Permian 

and even late Permian in age without palaeontological data (Martínez-García 1991a, b; 

Martínez-García et al., 2001). Our palaeontological criteria indicates that this Formation 

has a Middle Triassic age. We name it as the Cicera Formation. Other units showing 

local development, such as the Sagra Formation, were initially well defined (Gand et al., 

1997) but subsequently wrongly correlated with the Caravia Formation (Martínez-

García, 1991a). Similarly, the Sotres Formation was first ascribed an "Autunian age" 

and considered of marine origin with volcanic rocks at the base (Martínez-García, 

1991a). However, this formation includes carbonates that are clearly of continental 

origin (Mamet and Martínez-García, 1995). Palaeontological data assign a Kungurian 

age to this formation (Juncal et al., 2016) and the volcanic rocks described at its base 

(Martínez-García, 1991a) would be part of what is defined in this study as the Acebal 

Formation (Fig. 18).  

The Rueda Formation is also firstly described in the present work. The stratigraphic 

location of this formation, its limited thickness, its marine origin and estimated middle 

Carnian age are of great relevance from a palaeogeographic point of view. It is not a 

clear temporal equivalent to other Middle Triassic ("Muschelkalk facies platforms") or 

Late Triassic (“Keuper facies”) sedimentary successions described in the rest of the 

Iberian domain (Escudero-Mozo et al., 2015). Further, the sedimentary record of the 

unit referred to in this work as Cicera Formation, of Ladinian-Carnian age, has been 

also considered part of the "Buntsandstein" units (García-Mondejar et al., 1986; 

Martínez-García, 1991a). However, equivalent units have been assigned an Olenekian-

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Anisian age in the rest of Iberia (López-Gómez et al., 2002). A possible interpretation is 

that the Triassic sedimentary record is younger in the Basque-Cantabrian Basin than in 

neighbouring basins of the Iberia domain, which would confirm the large gap in 

sedimentation, probably from the Kungurian or early Roadian (late early Permian-early 

middle Permian) to the late Anisian or Ladinian (Middle Triassic). It follows that the 

sedimentation gap could have lasted more than 30 Myr. In the study zone, this 

interruption in sedimentation started at the end of the Sotres Formation deposition and is 

recorded by a karst surface in all the studied sections (Figs. 6B, 8i), even in the 

Villabona borehole (Fig. 5). In addition, the lateral extension of this surface points to its 

considerable palaeogeographic significance, and likely represents the subaerial exposure 

of a lake or lakes that occupied most of the Permian Cantabrian basins at the end of the 

Cisuralian (early Permian). 

The vertical succession of the sedimentary record presented in this contribution, its 

interruptions and its subdivision into five TS units allow us to compare the Permian and 

Triassic record in the Cantabrian Mountains with other basins of the central and eastern 

Pyrenees (Fig. 1a) described by Gisbert (1981) and Gretter et al. (2015) of the 

lithostratigraphical succession in these latter basins, a possible lateral comparison could 

be done with the Cantabrian Mountains succession (Fig. 18). The San Tirso and Acebal 

units, or TSI and TSII, would be broadly time-equivalent to the Gray and Transition 

units of the central and eastern Pyrenees. On the other hand, the late Kungurian-early 

Roadian sedimentary interruption at the top of the lacustrine deposits of the Sotres 

Formation could broadly correspond to an interruption of similar age, represented by the 

top of the Upper Red Unit in the central and eastern Pyrenean basins. In the same way, 

the period without sedimentation and / or erosion spanned from the uppermost 

Kungurian-lowermost Roadian (related to the top of the Sotres Formation) to the late 

Anisian (Middle Triassic) in the western Basque-Cantabrian Basin and could 

correspond to the interruption in sedimentation lasting until the Spathian (late Early 

Triassic) in the central and the eastern Pyrenean basins (Mujal et al., 2016). This lateral 

comparison of the main TS sequences between both areas is highly relevant. It confirms 

a broadly similar post-Variscan evolution both for all the basins of northern Iberia, and 

for basins developing in the western Tethys realm, presently in SE France and Sardinia. 

The main Permian-Triassic tectono-sedimentary units of these basins were indeed 
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recently compared to the units identified in the basins of the central and eastern 

Pyrenees by Gretter et al. (2015). 

11. Conclusions 

The Cantabrian Mountains and Pyrenees represent the western and eastern ranges, 

respectively, of the Pyrenean-Cantabrian Orogen that resulted from the collision of the 

Iberian and Eurasian plates, mostly in Cenozoic times. Despite their coetaneous origin, 

with neighbouring basins, the tectono-sedimentary evolution of the Cantabrian 

Mountains at the beginning of the Alpine cycle (extensional phases) has so far been 

considered independently. A specific geodynamic evolution has been interpreted 

different to the other western Peri-Tethys realm basins, including rhe eastern part of the 

some orogen, corresponding to the Pyrenees. This has generated erroneous 

palaeogeographic considerations in all these domains from the latest Carboniferous to 

the Late Triassic. 

Our multidisciplinary study was based on detailed geological mapping, field sections, 

stratigraphy, sedimentology and volcanic rock petrology along with new 

palaeontological data (pollen associations, macroflora and footprints). This combined 

approach has served to differentiate five new tectono-sedimentary units (TS I – TS V) 

interrupted by periods of tectonic stability. As a result, we define a new 

lithostratigraphical succession consisting of six formations: San Tirso, Acebal, Sotres, 

Cicera and Transicion formations. This new stratigraphic model simplifies the 

nomenclature of previous studies and avoids definitions of stratigraphic units resulting 

from poorly defined ages or repetitions. Our study was enhanced with offshore data 

obtained from two boreholes and 2D reflection seismic profiles acquired in the North 

Iberian continental platform, and with onshore data from the Villabona Mine borehole. 

The main characteristics of the five differentiated tectono-sedimentary units are:  

TS I. During the latest Carboniferous and earliest Permian (late Gzhelian-early 

Asselian), late-Variscan dextral strike-slip faults developed, accommodating the latest 

compressional orogenic efforts. Related to this late-Variscan event, small and isolated 

basins were generated and hosted the San Tirso Formation record, which consists of 

medium to distal humid alluvial fan sediments.  
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TS II. The Variscan orogen collapsed in early Permian times, and narrow isolated basins 

developed controlled by the reactivation of the E-W and NE-SW Variscan structures 

and NW-SE late Variscan structures. Associated with the Permian extensional collapse 

(Asselian-Sakmarian), a calc-alkaline magmatism represented by volcanic and 

volcanosedimentary intercalations (Acebal Formation) appeared in the Permian basins, 

together with small plutons in the Variscan basement. Subhorizontal cleavages 

developed during this Permian extensional event. 

TS III. At the end of the early Permian (Kungurian), further reactivation of Variscan and 

late Variscan structures led to alluvial and carbonate lacustrine sedimentation (Sotres 

Formation), representing the end of Permian sedimentation in the Basque-Cantabrian 

Basin. This interruption in sedimentation gave way to a deep karstification process that 

has been acknowledged in the whole basin. 

TS IV. After about 30 Myr of interruption, sedimentation recommenced during a rifting 

event of Middle-Late Triassic age (late Anisian-middle Carnian). During this event, a 

large, compartmentalized extensional basin was generated. A thick fluvial sedimentary 

record (Cicera Formation or “Buntsandstein”) filled this basin. This sedimentation 

accumulated in the Corrales-Aguilar sub-basin in the SE, and ended with the first 

Mesozoic short, carbonate marine incursion (Rueda Formation) or “Muschelkalk”. In 

this new stratigraphic succession, the so-called "Buntsandstein" and “Muschelkalk” 

units are remarkably younger than in the rest of Iberia.  

TS V. The younger Triassic (Norian-Rhaetian) sedimentary record built up both in the 

Corrales-Aguilar sub-basin and the Gijón-Villaviciosa sub-basin to the NW. This record 

is represented by shallow marine carbonate sediments (Transición Formation). During 

the Late Triassic, the basins were much more compartmentalized and developed several 

depocenters related to different normal faults. 

Main lithostratigraphical differences between the Asturian, Palentine and Cantabrian 

areas of the Cantabrian Basin are recorded laterally by the presence or absence of some 

units. This is linked to the development of a significant palaeorelief and to tectonic 

activity.  

The more precise I-V TS units defined here, including the volcanism character of TS II, 

enable a broad lateral comparison of these units with the TS units defined in the central 
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and eastern Pyrenees. This suggests a similar post-Variscan tectono-sedimentary 

evolution (with slight time differences) for all the Pyrenean-Cantabrian basins, from the 

eastern Pyrenean basins to the western Basque-Cantabrian basin. 

 

Short conclusion 

The beginning of the Alpine cycle in the Cantabrian Mountains has been previously 
interpreted within a specific geodynamic context, independently from the general 
tectono-sedimentary phases of neighbouring western Peri-Tethys basins of the same 
age. Based on detailed multidisciplinary field work, including one onshore borehole, 2D 
reflection seismic profiles and new age data, we have defined six new 
lithostratigraphical units and five new tectono-sedimentary units (TS I-V). For the first 
time, we propose a general, unifying model for the post-Variscan to early Alpine 
tectono-sedimentary evolution of the whole Pyrenean-Cantabrian. This novel 
interpretation will simplify palaeogeographic interpretations of the Permian-Triassic 
evolution of the Pyrenean belt.  
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Figure 1. a) Structural sketch showing the different tectono-stratigraphic regions of the 

Alpine Pyrenean-Cantabrian Orogen in the northern Iberian Peninsula (modified from 

Martín-González and Heredia, 2011). b) Simplified geological map of the central 

Cantabrian Mountains with the locations of the studied sections and localities. See 

location in figure 1a. Schematic geological cross-sections showing the Alpine structure 

of the central Cantabrian Mountains (Modified from Pulgar et al., 1999). Permian and 

Mesozoic rocks are not distinguished in the cross sections.   

 

Figure 2. a) Structural sketch of the Cantabrian Zone (Variscan orogenic belt) showing 

the western end of the Basque-Cantabrian Basin and the onshore Asturian Basin. 

Modified from Alonso et al. (2009). The Asturian sector is equivalent to the Asturian 

Basin, and the Palentine and Cantabrian sectors are located to the south and to the north, 

respectively. b) Geological cross section showing the Variscan structure of the 

Cantabrian Zone (Modified from Aller et al., 2004). Location of the cross section in 

figure 2a. 

 

Figure 3. Palaeogeographic sketch of eastern equatorial Pangea for the early-middle 

Permian transition. The studied area is marked with a red square. Modified from Ziegler 

(1988). Palaeolatitudinal data obtained from Ziegler (1993).  

 

Figure 4. Studied stratigraphic sections and log of the Villabona borehole. Sections 

include differentiated lithostratigraphical units, architectural elements (abbreviations 

refer to figure 7) and locations of our palaeontological data (see also Table 2 for more 

detailed location of the palaeontological data in the studied sectios and the different 

formations). See figure 1b for the location of the sections. Geographical location of the 

sections: Villabona: 43º27´50´´, 5º50´18´´; Frieres: 43º20´40´´, 5º44´20´´; Acebal: 

43º19´40´´, 5º42´20´´; Sotres: 43º14´09´´, 4º44´18´´; Cicera: 43º14´10´´, 4º34´12´´; 

Peña Sagra: 43º02´18´´, 4º26´15´´; Rueda: 42º51´30´´, 4º24´40´´; Carmona: 43º16´50´´, 

4º20´18´´; Riocorvo: 43º16´12´´, 3º54´12´´.  

 

Figure 5. Partial section (664.3 m to 668.9 m) of the lithologic log from Villabona Mine 

(Courtesy of the Minersa Group). This part of the section represents the karst on the top 

of the Sotres Formation. Lateral equivalents to the karst are shown in Peña Careses, east 

Oviedo (Fig. 6B), and in the Carmona section (Fig. 9i). Vertical (red) lines mark some 
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levels of breccias originated by dissolution (karstification). Part of the karst in the 

lithologic log is mineralized with fluorite, being this mineral the main objective of the 

exploration in the mine. Total thickness of the Sotres Formation in the lithologic log 

from Villabona Mine reaches 7.10 m. 

 

Figure 6. A) Cicera Formation (late Middle to early Late Triassic)  lying unconformably 

on the marine Carboniferous basement of the Cicera section. The lateral thickness 

changes of this formation are very important in this area. This formation is defined here 

for the first time and its age obtained by means of palynological assemblages. B) 

Karstification on the top of the Sotres Formation, in Peña Careses, east Oviedo. The 

picture is taken in a quarry where internal mineralization of the formation is obtained.  

 

 

Figure 7. Differentiated facies, facies associations and defined architectural elements. 

Vertical location of the architectural elements in the studied sections are shown in figure 

4. Representative field pictures of the architectural elements are provided in figure 8. 

Nomenclature of the facies, facies associations and architectural elements has been 

mainly based on Miall's (1996, 2014) description and classification, while new codes 

have been adopted here for sediments of lacustrine, volcaniclastic and marine origin. 

 

Figure 8. Field pictures of representative architectural elements. A- Gh; b- Gtp; c- GStp; 

d- Stp1; e- Stp2; f- Fl; g- Fm; h- Lc1; i- Lck; j- Vf; k- Vc; l- Ve, m- Stp1, Fm; n- Lc1; 

Fl; o- Sm. See figure 7 for descriptions of the elements. Facies, facies associations and 

architectural elements nomenclature has been mainly based on Miall's (1996, 2014) 

description and classification, while new codes have been adopted here for sediments of 

lacustrine, volcaniclastic and marine origin. 

 

Figure 9. Stratigraphic location of the differentiated Permian and Triassic 

lithostratigraphical units (1 to 6) based on new palaeontological data, and defined 

tectono-sedimentary units (TS I-V) in the Cantabrian Mountains. Palynological 

samples: a: SO1, b: Ca1, c: SP5, d: Cic11, e: Cic12, f: VBO17, g: Cu1. See Table 2 for 

a more detailed location of the different footprints, macroflora and pollen associations. 

Most of these samples are described here as the first time. 
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Figure 10. Representative pollen specimens of the differents associations: 1. 

Triadispora crassa, 2. Triadispora staplinii, 3. Triadispora plicata, 4. Triadispora 

falcata, 5. Triadispora epigona, 6. Triadispora verrucata, 7. Triadispora suspecta, 8. 

Chordasporites singulichorda, 9. Illinites Chitonoides, 10. Microcachryidites 

fastidioides, 11. Microcachryidites doubingeri, 12. Lunatisporites noviaulensis, 13. 

Patinasporites densus, 14. Vallasporites ignacii, 15. Camerosporites secatus, 16. 

Ovalipollis pseudoalatus, 17. Duplicisporites granulatus, 18. Classopollis zwolinskae, 

19. Classopollis torosus, 20. Rhaetipollis germanicus. 21. Plaesiodictyon mosellanum. 

See text for the locations of the specimens in the assemblages and the formations, and 

figure 4 and Table 2 for their location in the sections. 

 

Figure 11. Supaia sp. specimen. Base of the Sotres Formation of the Peña Sagra - La 

Cohilla section. See figures 4, 9 and 18, and Table 2 for stratigraphic locations. This is 

the second specimen of Supaia sp. described in the Cantabrian Mountains, after the 

specimen described in Gand et al. (1997). 

 

Figure 12. A) Varanopus rigidus. Base of the Sotres Formation of the Peña Sagra - La 

Cohilla section. B) Coelurosaurichnus. Upper part of the Cicera Formation  in the 

Cicera section. See figures 4, 9 18, and Table 2 for stratigraphic locations. Both 

footprints were obtained in fine sandstone beds. 

 

Figure 13. A: Outcrop photograph of tuffaceous sandstones showing coarse, parallel 

bedding in the Acebal - P. Siero section. B: Photomicrograph (parallel polars) of a 

juvenile fragment of chilled margin containing feldspar microphenocrysts embedded in 

a fine-grained matrix with glass. C: Photomicrograph (parallel polars) of a cognate lithic 

fragment of amphibole andesite. D: Photomicrograph (crossed polars) of a cognate 

lithic fragment of biotite andesite. E: Outcrop photograph of the ash fall deposit at the 

top of the Acebal Formation. F: Photomicrograph (parallel polars) of the ash fall 

deposit, with abundant vitic shards and quartz crystal. From the base of the section, 

samples were obtained at: 14, 19, 58, 61, 69, 91, 113, 174, 183, 202, 219, 222, 224.5, 

229 meters. See also Acebal - P. Siero section in figure 4. 
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Figure 14. Location of the Galicia-B2 (Gal-B2) and the Mar-Cantábrico K1 (MC-K1) 

boreholes that drilled Triassic materials and the CS01-112 and CS01-135 seismic 

reflection profiles, displayed in figure 15A, B. 

 

Figure 15. A- Geological description and seismic to well ties at borehole Galicia-B2 and 

profile CS01-112 in the western North Iberian continental platform. The well record 

shows the ages of sediments, the lithologies and the main formation tops defined along 

the borehole. The sonic log displayed to the right was used to constrain the velocity 

model that enabled the development of the T-D chart shown below. We used the T-D 

chart to introduce borehole data in the 2D seismic reflection profile CS01-112, crossing 

the western North Iberian margin from south to north. The seismic line shows the 

interpretation of the main seismic units and structures developed during the Mesozoic 

extension. Exaggerated vertical scale. At the bottom, the uninterpreted seismic line is 

displayed on a 1:1 scale; B- Geological description and seismic to well ties at borehole 

Mar Cantábrico-K1 and profile CS01-135 in the central North Iberian continental 

platform. The well record shows the ages of sediments, the lithologies, the geological 

facies and the main formation tops defined along the borehole. The sonic log displayed 

to the right was used to constrain the velocity model that enabled the construction of the 

T-D chart shown below. We used the T-D chart to introduce borehole data in the 2D 

seismic reflection profile CS01-135, crossing the central North Iberian margin from 

south to north. The seismic line shows the interpretation of the main seismic units and 

structures developed during Mesozoic extension and Alpine compression. Exaggerated 

vertical scale. At the bottom, the uninterpreted seismic line is displayed on a 1:1 scale.  

See location of the Galicia-B2 (Gal-B2) and the Mar-Cantábrico K1 (MC-K1) boreholes 

and the CS01-112 and CS01-135 seismic reflection profiles in figure 14. 

 

Figure 16. Geological sketch showing the location of the main Permian basins, igneous 

rocks and faults in the central Cantabrian Mountains. Permian basins: A) Villabona, B) 

La Camocha, C) La Justa-Aramil, D) Villaviciosa, E) Sotres-La Hermida, F) Cueto 

Turis, G) Peña Sagra, H) Peña Labra. The Mesozoic cover in the western Vasco-

Cantábrica Region has been deleted to show the relationships between Permian basins 

and Variscan structures in the whole study area. Variscan faults that were reactivated in 

Permian times are shown in red. 
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Figure 17. Geological sketch showing the location of the main Triassic faults and sub-

basins of the western Basque-Cantabrian basin in the central Cantabrian Mountains. 

Triassic sub-basins: A) Gijón-Villaviciosa, B) Corrales-Aguilar. Variscan faults that 

were reactivated in Triassic times are shown in red. See figure 16 to compare the change 

of basin configurations from the Permian to Triassic. 

 

Figure 18. Comparison between our proposed post-Variscan Permian-Triassic 

stratigraphy and those derived from previous works in the Cantabrian Mountains (left), 

and comparison of the differentiated lithostratigraphical and tectono-sedimentary units 

of the Cantabrian Mountains with those of the Central and E Pyrenees (right). Numbers 

represent references with supporting data: 1- Martínez-García et al. (1998); 2- Suárez-

Vega (1974); 3- Martínez-García (1973); 4- Martínez-García (1991a); 5- Martínez-

García (1991b); 6- De la Horra et al. (2012); 7- Manjón and Gutiérrez-Claverol (1991); 

8- Martínez-García et al. (1991); 9- Martínez-García et al. (2001); 10- Wagner and 

Martínez-García (1982); 11- Gand et al. (1997); 12- Maas (1974); 13- García-Mondejar 

et al. (1986); 14- Robles and Pujalte (2004); 15- Robles (2004); 16- Martínez-García 

(2004). Units: St- San Tirso; So- Sotres; Ca- Cabranes; Cv- Caravia; Tr- Tránsito; Ar- 

Arroyo; Pa- Paraes; Cu- La Cuesta; Na- Nansa; B- Buntsandstein; M- Muschelkalk; K- 

Keuper; Ab- Acebal; Ci- Cicera; GU- Gray Unit; TU- Transit Unit; LRU- Lower Red 

Sandstone; URS- Upper Red Sandstone. 

 

Table 1. Summary of classic lithological units described in the study area by previous 

authors (left and centre) and the new units described in the present work (right). 

Numbers represent references with supporting data: 1- Martínez-García et al. (1998); 2- 

Suárez-Vega (1974); 3- Martínez-García (1973); 4- Martínez-García (1991a); 5- 

Martínez-García (1991b); 6- De la Horra et al. (2012); 7- Manjón and Gutiérrez-

Claverol (1991); 8- Martínez-García et al. (1991); 9- Martínez-García et al. (2001); 10- 

Wagner and Martínez-García (1982); 11- Gand et al. (1997); 12- Maas (1974); 13- 

García-Mondejar et al. (1986); 14- Robles and Pujalte (2004); 15- Robles (2004); 16- 

Martínez-García (2004). 

 

Table 2. Location in the formations and the studied sections of the palaeontological 

samples obtained in this work (palynological associations, macroflora and footprints). 
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The asterisc indicates a sample obtained by De la Horra et al. (2012). See also figures 4 

and 9.  
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Highlights 

 The beginning of the Alpine cycle in the Cantabrian Mountains has been 
erroneously interpreted within a specific geodynamic context far from the well-
known general evolutionary stages of same-age western Peri-Tethys basins. 

 Through detailed multidisciplinary field work, including new palaeontological 
data, this study defines new lithostratigraphical units and five new tectono-
sedimentary cycles (TS I-V) in the Cantabrian Mountains. 

 Generalized karstification in the basin of palaeogeographical significance 
represents the end of Permian deposition in the Cantabrian Mountains, and this 
was followed by more than 30 Ma of no sedimentation. 

 As our main contribution to the field, the TS I-V units defined point to a 
common post-Variscan to early Alpine tectono-sedimentary evolution for the 
whole Pyrenean-Cantabrian realm. 
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