13 research outputs found

    Development of 100^{100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Get PDF
    We report recent achievements in the development of scintillating bolometers to search for neutrinoless double-beta decay of 100^{100}Mo. The presented results have been obtained in the framework of the LUMINEU, LUCIFER and EDELWEISS collaborations, and are now part of the R\&D activities towards CUPID (CUORE Update with Particle IDentification), a proposed next-generation double-beta decay experiment based on the CUORE experience. We have developed a technology for the production of large mass (\sim1 kg), high optical quality, radiopure zinc and lithium molybdate crystal scintillators (ZnMoO4_4 and Li2_2MoO4_4, respectively) from deeply purified natural and 100^{100}Mo-enriched molybdenum. The procedure is applied for a routine production of enriched crystals. Furthermore, the technology of a single detector module consisting of a large-volume (100\sim 100~cm3^3) Zn100^{100}MoO4_4 and Li2_2100^{100}MoO4_4 scintillating bolometer has been established, demonstrating performance and radiopurity that are close to satisfy the demands of CUPID. In particular, the FWHM energy resolution of the detectors at 2615 keV --- near the QQ-value of the double-beta transition of 100^{100}Mo (3034~keV) --- is \approx 4--10~keV. The achieved rejection of α\alpha-induced dominant background above 2.6~MeV is at the level of more than 99.9\%. The bulk activity of 232^{232}Th (228^{228}Th) and 226^{226}Ra in the crystals is below 10 μ\muBq/kg. Both crystallization and detector technologies favor Li2_2MoO4_4, which was selected as a main element for the realization of a CUPID demonstrator (CUPID-0/Mo) with \sim7 kg of 100^{100}Mo

    Optical, luminescence, and scintillation properties of advanced ZnWO4 crystal scintillators

    No full text
    Zinc tungstate (ZnWO4) crystal scintillators are promising detection material for the experiments searching for double beta decay, dark matter, and investigating rare alpha decays. An extended R&D was performed to develop advanced quality ZnWO4 crystal scintillators. The R&D programme included the selection of the initial materials, the variation of the compound stoichiometry, the application of single and double crystallization, and the annealing of the crystal boules. The optical transmittance of the produced boules was measured, and the luminescence under X-ray excitation in the temperature region from 85 K to room temperature was studied (thermally stimulated luminescence was measured till 350 K). The energy resolution and the relative scintillation pulse amplitude were measured with gamma-sources demonstrating high scintillation properties of the samples produced by single crystallization from deeply purified zinc and tungsten oxides, with stoichiometric composition, annealed in air atmosphere

    New development of radiopure ZnWO4 crystal scintillators

    No full text
    The residual radioactive contaminations of zinc tungstate crystal scintillators, produced by low-thermal-gradient Czochralski technique in various conditions, have been measured in the DAMA/R&D; low background setup at the Gran Sasso National Laboratory (INFN, Italy). The total alpha activity has been measured in the detectors realized with different processes to vary between 158 and 1418 μ Bq/kg. The internal 228 Th contamination activity has been estimated as 0.34 μ Bq/kg in the most polluted crystal, while only upper limits for other ones have been set at level from < 0.17 μ Bq/kg to < 1.3 μ Bq/kg. These results open possibility for further radio-purifications of ZnWO 4 crystal scintillators, which are of potential interests in various fields

    Dark matter directionality approach using ZnWO4 crystal

    No full text
    The development of low-background anisotropic detectors can offer a unique way to study those Dark Matter (DM) candidate particles able to induce nuclear recoils through the directionality technique. Among the anisotropic scintillators, the ZnWO4 has unique features and is an excellent candidate for the purposes. Both the light output and the scintillation pulse shape depend on the impinging direction of heavy particles with respect to the crystallographic axes and can supply two independent modes to study the directionality and discriminate γ/β radiation. Measurements to study the anisotropic and scintillation performances of ZnWO4 are reported

    Final results on the 0νββ0νββ decay half-life limit of 100^{100}Mo from the CUPID-Mo experiment

    Get PDF
    The CUPID-Mo experiment to search for 0νββ\nu\beta\beta decay in 100^{100}Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0νββ\nu\beta\beta decay experiment. CUPID-Mo was comprised of 20 enriched Li2_2100^{100}MoO4_4 scintillating calorimeters, each with a mass of \sim 0.2 kg, operated at \sim20 mK. We present here the final analysis with the full exposure of CUPID-Mo (100^{100}Mo exposure of 1.47 kg×\timesyr) used to search for lepton number violation via 0νββ\nu\beta\beta decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the 100^{100}Mo 0νββ\nu\beta\beta decay half-life of T^{0\nu}_{1/2} > 1.8 \times 10^{24} year (stat.+syst.) at 90% C.I. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of \left < (0.28--0.49)0.49) eV, dependent upon the nuclear matrix element utilized
    corecore