126 research outputs found

    Application of an Equilibrium Vaporization Model to the Ablation of Chondritic and Achondritic Meteoroids

    Full text link
    We modeled equilibrium vaporization of chondritic and achondritic materials using the MAGMA code. We calculated both instantaneous and integrated element abundances of Na, Mg, Ca, Al, Fe, Si, Ti, and K in chondritic and achondritic meteors. Our results are qualitatively consistent with observations of meteor spectra.Comment: 8 pages, 4 figures; in press, Earth, Moon, and Planets, Meteoroids 2004 conference proceeding

    Spectral analysis of two Perseid meteors

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms

    Get PDF
    We have developed a class of selective antimicrobial agents based on the recognition of the shape and size of the bacterial cells. These agents are anisotropic colloid particles fabricated as negative replicas of the target cells which involve templating of the cells with shells of inert material followed by their fragmentation. The cell shape recognition by such shell fragments is due to the increased area of surface contact between the cells and their matching shell fragments which resembles antibody-antigen interaction. We produced such "colloid antibodies" with photothermal mechanism for shape-selective killing of matching cells. This was achieved by the subsequent deposition of (i) gold nanoparticles (AuNPs) and (ii) silica shell over yeast cells, which were chosen as model pathogens. We demonstrated that fragments of these composite AuNP/silica shells act as "colloid antibodies" and can bind to yeast cells of the same shape and size and deliver AuNPs directly onto their surface. We showed that after laser irradiation, the localized heating around the AuNPs kills the microbial cells of matching shape. We confirmed the cell shape-specific killing by photothermal colloid antibodies in a mixture of two bacterial cultures of different cell shape and size. This approach opens a number of avenues for building powerful selective biocides based on combinations of colloid antibodies and cell-killing strategies which can be applied in new antibacterial therapies

    Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland

    Get PDF
    Caps and stipes of 141 fruiting bodies of Parasol Mushroom (Macrolepiota procera) and surface layer of soils collected from 11 spatially distant and background (pristine) areas in Northern Poland were analyzed for Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr, and Zn by inductively coupled plasma optical emission spectroscopy and cold vapor atomic absorption spectroscopy. In terms of bioconcentration and bioexclusion concept, K, Ag, Cu, Rb, and P were highly bioconcentrated in caps, and their bioconcentration factor values varied for the 11 sites between 120 and 500—67–420, 70–220, 10–170, and 45–100, respectively. Cd, Zn, Mg, and Na showed bioconcentration factors (BCFs) between 3.3 and 36, 3.7–15, 0.92–6.3, and 1.4–44 while Al, Ba, Ca, Co, Cr, Mn, Ni, Pb, and Sr were excluded (BCF < 1). The Parasol Mushroom is a species harvested in the wild, and its caps are of unique taste and can contain a spectrum of essential and hazardous mineral compounds accumulated at elevated concentrations, even if collected at the background (pristine) areas. These elevated mineral concentrations of the caps are due to the efficient bioconcentration potential of the species (K, Ag, Cu, Rb, P, Cd, Zn, Mg, and Na) and abundance in the soil substrates (Al, Ca, Fe, Mn). The estimated intake rates of Cd, Hg, and Pb contained in Parasol Mushroom’s caps show a cause for concern associated with these metals resulting from the consumption of between 300- and 500-g caps daily, on a frequent basis in the mushrooming season

    A novel approach to fireball modeling: The observable and the calculated

    Get PDF
    Estimating the mass of a meteoroid passing through the Earth's atmosphere is essential to determining potential meteorite fall positions. High-resolution fireball images from dedicated camera networks provide the position and timing for fireball bright flight trajectories. There are two established mass determination methods: the photometric and the dynamic. A new approach is proposed, based on the dynamic method. A dynamic optimization initially constrains unknown meteoroid characteristics which are then used in a parametric model for an extended Kalman filter. The extended Kalman filter estimates the position, velocity, and mass of the meteoroid body throughout its flight, and quantitatively models uncertainties. Uncertainties have not previously been modeled so explicitly and are essential for determining fall distributions for potential meteorites. This two-step method aims to automate the process of mass determination for application to any trajectory data set and has been applied to observations of the Bunburra Rockhole fireball. The new method naturally handles noisy raw data. Initial and terminal bright flight mass results are consistent with other works based on the established photometric method and cosmic ray analysis. A full analysis of fragmentation and the variability in the heat-transfer coefficient will be explored in future versions of the model

    An Optical Survey for mm-Sized Interstellar Meteoroids

    Full text link
    We report high resolution multi-station observations of meteors by the Canadian Automated Meteor Observatory (CAMO) recorded from June 2009 to August 2010. Our survey has a limiting detection magnitude of +5 mag in R-band, equivalent to a limiting meteoroid mass of ~2*E-7 kg. The high metric trajectory accuracy (of the order of 30 m perpendicular to the solution and 200 m along-track) allows us to determine velocities with average uncertainty of < 1.5% in speed and ~0.4 degr in radiant direction. A total of 1739 meteors had measured orbits. The data has been searched for meteors in hyperbolic orbits, which are potentially of interstellar origin. We found 22 potential hyperbolic meteors among our sample, with only two of them having a speed at least three sigma above the hyperbolic limit. For our one year survey we find no clear evidence of interstellar meteoroids at mm-sizes in a weighted time-area product of ~1*E4 km^2*h. Backward integrations performed for these 22 potentially hyperbolic meteors to check for close encounters with planets show no considerable changes in their orbits. Detailed examination leads us to conclude that our few identified events are most likely the result of measurement error. We find an upper limit of f_ISP < 2*E-4/(km^2*h) for the flux of interstellar meteoroids at Earth with a limiting mass of m > 2*E-7 kg.Comment: 15 pages, 2 figures, accepted by Ap

    Actual changes in system of urban planning in post-socialist city: the case of Prague

    Get PDF
    After the change of political system in Czechoslovakia (1989) came also a lot of social, economical and cultural changes. Today, all the Czech cities stay in front of the biggest change of city planning philosophy in last two decades. Prague, the capital city of Czech Republic, decided for a big institutional transition in 2012. The municipality, in cooperation with Faculty of Architecture CTU in Prague, is preparing completely pioneering methodology for quality commissioning of land use plans and, in cooperation with the new Institute of Planning and Development, is preparing innovative system of city planning. There are new ordinances, laws, regulations, tourist trade strategies and many other documents. Prague, as one of the strongest regions in East-Central Europe, can be seen like a laboratory of current development of post-socialist city. The new methodology of Metropolitan Plan could be a key to success
    • 

    corecore