156 research outputs found

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Role of information and communication networks in malaria survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quite often symptoms of malaria go unrecognized or untreated. According to the Multilateral Initiative on Malaria, 70% of the malaria cases that are treated at home are mismanaged. Up to 82% of all malaria episodes in sub-Saharan Africa are treated outside the formal health sector. Fast and appropriate diagnosis and treatment of malaria is extremely important in reducing morbidity and mortality.</p> <p>Method</p> <p>Data from 70 different countries is pooled together to construct a panel dataset of health and socio-economic variables for a time span of (1960–2004). The generalized two-stage least squares and panel data models are used to investigate the impact of information and communication network (ICN) variables on malaria death probability. The intensity of ICN is represented by the number of telephone main lines per 1,000 people and the number of television sets per 1,000 people.</p> <p>Results</p> <p>The major finding is that the intensity of ICN is associated with reduced probability of deaths of people that are clinically identified as malaria infected. The results are robust for both indicators i.e. interpersonal and mass communication networks and for all model specifications examined.</p> <p>Conclusion</p> <p>The results suggest that information and communication networks can substantially scale up the effectiveness of the existing resources for malaria prevention. Resources spent in preventing malaria are far less than needed. Expanded information and communication networks will widen the avenues for community based "participatory development", that encourages the use of local information, knowledge and decision making. Timely information, immediate care and collective knowledge based treatment can be extremely important in reducing child mortality and achieving the millennium development goal.</p

    Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization

    Get PDF
    The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro

    Aldo Keto Reductase 1B7 and Prostaglandin F2α Are Regulators of Adrenal Endocrine Functions

    Get PDF
    Prostaglandin F2α (PGF2α), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF2α synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family. The adrenal gland is a major site of AKR1B expression in both human (AKR1B1) and mouse (AKR1B3, AKR1B7). Thus, we examined the PGF2α biosynthetic pathway and its functional impact on both cortical and medullary zones. Both compartments produced PGF2α but expressed different biosynthetic isozymes. In chromaffin cells, PGF2α secretion appeared constitutive and correlated to continuous expression of COX1 and AKR1B3. In steroidogenic cells, PGF2α secretion was stimulated by adrenocorticotropic hormone (ACTH) and correlated to ACTH-responsiveness of both COX2 and AKR1B7/B1. The pivotal role of AKR1B7 in ACTH-induced PGF2α release and functional coupling with COX2 was demonstrated using over- and down-expression in cell lines. PGF2α receptor was only detected in chromaffin cells, making medulla the primary target of PGF2α action. By comparing PGF2α-responsiveness of isolated cells and whole adrenal cultures, we demonstrated that PGF2α repressed glucocorticoid secretion by an indirect mechanism involving a decrease in catecholamine release which in turn decreased adrenal steroidogenesis. PGF2α may be regarded as a negative autocrine/paracrine regulator within a novel intra-adrenal feedback loop. The coordinated cell-specific regulation of COX2 and AKR1B7 ensures the generation of this stress-induced corticostatic signal

    Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions

    Get PDF
    Matricellular proteins are modulators of cell-matrix interactions and cellular functions. The group includes thrombospondin, osteopontin, osteonectin/SPARC, tenascin, disintegrins, galectins and CCN proteins. The production of matricellular proteins such as osteopontin, SPARC or tenascin is highly upregulated in melanoma and other tumors but little is known about their functions in tumor growth, survival, and metastasis. The distribution pattern of CCN3 differs from most other matricellular proteins, such that it is produced abundantly by normal melanocytes, but is not significantly expressed in melanoma cells. CCN3 is known to inhibit melanocyte proliferation and stimulate adhesion to collagen type IV, the main component of the basement membrane. CCN3 has a unique role in securing adhesion of melanocytes to the basement membrane distinct from other melanoma-produced matricellular proteins which act as de-adhesive molecules and antagonists of focal adhesion. Qualitative and quantitative changes in matricellular protein expression contribute to melanoma progression similar to the E-cadherin to N-cadherin class switch, allowing melanoma cells to escape from keratinocyte control

    Fibulin-5, an integrin-binding matricellular protein: its function in development and disease

    Get PDF
    Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including α5β1, αvβ3, and αvβ5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF165-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the α5β1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated

    The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment

    Get PDF
    Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH) and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology.We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months) and old (age 20-24 months) C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05). These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12), genotoxic/oxidative stress (e.g., Apod, Serpinb5) and other paracrine-acting effects (e.g., Cyr61). The expression of several collagen genes (e.g., Col1a1 and Col3a1) exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells.These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate

    Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification

    Get PDF
    Background The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis. Methods This was a prospective, multicenter, cohort study of patients undergoing medical intervention for vascular disease. Hazard ratios for ICA stenosis, clinical features, and plaque texture features associated with ipsilateral cerebrovascular or retinal ischemic (CORI) events were calculated using proportional hazards models. Results A total of 1121 patients with 50% to 99% asymptomatic ICA stenosis in relation to the bulb (European Carotid Surgery Trial [ECST] method) were followed-up for 6 to 96 months (mean, 48). A total of 130 ipsilateral CORI events occurred. Severity of stenosis, age, systolic blood pressure, increased serum creatinine, smoking history of more than 10 pack-years, history of contralateral transient ischemic attacks (TIAs) or stroke, low grayscale median (GSM), increased plaque area, plaque types 1, 2, and 3, and the presence of discrete white areas (DWAs) without acoustic shadowing were associated with increased risk. Receiver operating characteristic (ROC) curves were constructed for predicted risk versus observed CORI events as a measure of model validity. The areas under the ROC curves for a model of stenosis alone, a model of stenosis combined with clinical features and a model of stenosis combined with clinical, and plaque features were 0.59 (95% confidence interval [CI] 0.54-0.64), 0.66 (0.62-0.72), and 0.82 (0.78-0.86), respectively. In the last model, stenosis, history of contralateral TIAs or stroke, GSM, plaque area, and DWAs were independent predictors of ipsilateral CORI events. Combinations of these could stratify patients into different levels of risk for ipsilateral CORI and stroke, with predicted risk close to observed risk. Of the 923 patients with <70% stenosis, the predicted cumulative 5-year stroke rate was <5% in 495, 5% to 9.9% in 202, 10% to 19.9% in 142, and <20% in 84 patients. Conclusion Cerebrovascular risk stratification is possible using a combination of clinical and ultrasonic plaque features. These findings need to be validated in additional prospective studies of patients receiving optimal medical intervention alone. Copyright © 2010 by the Society for Vascular Surgery
    corecore