7,260 research outputs found

    The Hausdorff moments in statistical mechanics

    Get PDF
    A new method for solving the Hausdorff moment problem is presented which makes use of Pollaczek polynomials. This problem is severely ill posed; a regularized solution is obtained without any use of prior knowledge. When the problem is treated in the L 2 space and the moments are finite in number and affected by noise or round‐off errors, the approximation converges asymptotically in the L 2 norm. The method is applied to various questions of statistical mechanics and in particular to the determination of the density of states. Concerning this latter problem the method is extended to include distribution valued densities. Computing the Laplace transform of the expansion a new series representation of the partition function Z(β) (β=1/k BT ) is obtained which coincides with a Watson resummation of the high‐temperature series for Z(β)

    Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    Full text link
    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in nn-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as, the Gauss-Bonnet versions of the Bonnor-Vaidya(de Sitter/anti-de Sitter) solution, a global monopole and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditions on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics

    Reciprocal relativity of noninertial frames and the quaplectic group

    Full text link
    Newtonian mechanics has the concept of an absolute inertial rest frame. Special relativity eliminates the absolute rest frame but continues to require the absolute inertial frame. General relativity solves this for gravity by requiring particles to have locally inertial frames on a curved position-time manifold. The problem of the absolute inertial frame for other forces remains. We look again at the transformations of frames on an extended phase space with position, time, energy and momentum degrees of freedom. Under nonrelativistic assumptions, there is an invariant symplectic metric and a line element dt^2. Under special relativistic assumptions the symplectic metric continues to be invariant but the line elements are now -dt^2+dq^2/c^2 and dp^2-de^2/c^2. Max Born conjectured that the line element should be generalized to the pseudo- orthogonal metric -dt^2+dq^2/c^2+ (1/b^2)(dp^2-de^2/c^2). The group leaving these two metrics invariant is the pseudo-unitary group of transformations between noninertial frames. We show that these transformations eliminate the need for an absolute inertial frame by making forces relative and bounded by b and so embodies a relativity that is 'reciprocal' in the sense of Born. The inhomogeneous version of this group is naturally the semidirect product of the pseudo-unitary group with the nonabelian Heisenberg group. This is the quaplectic group. The Heisenberg group itself is the semidirect product of two translation groups. This provides the noncommutative properties of position and momentum and also time and energy that are required for the quantum mechanics that results from considering the unitary representations of the quaplectic group.Comment: Substantial revision, Publicon LaTe

    The Application of Feedback in Measurement

    Get PDF
    Instrument errors, error reduction, and elements of measurements for measurement systems with feedback instrumentatio

    Selfduality of non-linear electrodynamics with derivative corrections

    Get PDF
    In this paper we investigate how electromagnetic duality survives derivative corrections to classical non-linear electrodynamics. In particular, we establish that electromagnetic selfduality is satisfied to all orders in α\alpha' for the four-point function sector of the four dimensional open string effective action.Comment: 8 page

    Nonperturbative calculation of Born-Infeld effects on the Schroedinger spectrum of the hydrogen atom

    Full text link
    We present the first nonperturbative numerical calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized electrodynamics with nonlinear Maxwell-Born-Infeld field equations. We also show rigorous upper and lower bounds on the ground state. When judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant which is introduced by the Born-Infeld theory. We assess Born's own proposal for the value of his constant.Comment: 4p., 2 figs, 1 table; submitted for publicatio

    Generating Functional for Gauge Invariant Actions: Examples of Nonrelativistic Gauge Theories

    Full text link
    We propose a generating functional for nonrelativistic gauge invariant actions. In particular, we consider actions without the usual magnetic term. Like in the Born-Infeld theory, there is an upper bound to the electric field strength in these gauge theories.Comment: 14 pages, 2 figures; v2: misprints correcte

    Capacitive pressure transducer system

    Get PDF
    Closed loop capacitive pressure transducer with extended frequency response for very low pressure measurement

    An electronic Mach-Zehnder interferometer in the Fractional Quantum Hall effect

    Full text link
    We compute the interference pattern of a Mach-Zehnder interferometer operating in the fractional quantum Hall effect. Our theoretical proposal is inspired by a remarkable experiment on edge states in the Integer Quantum Hall effect (IQHE). The Luttinger liquid model is solved via two independent methods: refermionization at nu=1/2 and the Bethe Ansatz solution available for Laughlin fractions. The current differs strongly from that of single electrons in the strong backscattering regime. The Fano factor is periodic in the flux, and it exhibits a sharp transition from sub-Poissonian (charge e/2) to Poissonian (charge e) in the neighborhood of destructive interferences

    Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity

    Full text link
    We report on room temperature laser action of an all monolithic ZnO-based vertical cavity surface emitting laser (VCSEL) under optical pumping. The VCSEL structure consists of a 2{\lambda} microcavity containing 8 ZnO/Zn(0.92)Mg(0.08)O quantum wells embedded in epitaxially grown Zn(0.92)Mg(0.08)O/Zn(0.65)Mg(0.35)O distributed Bragg reflectors (DBRs). As a prerequisite, design and growth of high reflectivity DBRs based on ZnO and (Zn,Mg)O for optical devices operating in the ultraviolet and blue-green spectral range are discussed.Comment: Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Appl. Phys. Lett. 98, 011101 (2011) and may be found at http://apl.aip.org/resource/1/applab/v98/i1/p011101_s
    corecore