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INTRODUCTION

In recent years advanced research and technology in science and
engineering have created a need for newly improved and highly intricate
instrumentation. 1In particular, in the Aerospace field, one of the many
new demands on instrumentation has been for the developmeﬁt of a pressure

transducer with an extended frequency response that is capable of accurately

measuring very low pressures.

In the measurement of very low pressures, microscopic changes
in the properties of the sensing material become extremely important.
Many of the pressure transducers that are presently being used for low
pressure measurements provide an Indirect measure of pressure changes.
That is, in these instrumenfs the pressure of a gas is determined as a
quantitative measure of the microscopic changes of the properties (such
as thermal and electrical changes) of a particular material to which the
gas is exposed. The major disadvantage of this indirect measurement is
that the degree of change of the properties of the sensing element is not
only dependent upon gas pressure, but also upon the composition of the
gas and to the effects of environmental changes such as temperature changes.
Hence, in utilizing these instruments, it becomes necessary to provide

a corrrection factor for each gas and for different environmental conditions.

A more precise measurement can be obtained if the gas pressure
is directly measured by a mechanical sensing device. The advantage of a
direct measurement is that the pressure measurements are independent of

the nature of the gas.



In the low pressure range, the McIeod gauge has been the only
mechanical device capable of accurately measuring pressures as low as
10-2mu of mercury. However, in the last twenty years capacitive pressure
transducers héve been designed for the measurement of very low pressures.
This type of transducer utilizes the concept by which a physical gquantity,
in this case a pressure, deflects a sensing element préducing a capacitance
change. The transducer consists of a pressure sensitive metallic diaphragm
symmetrically placed betweeﬁ two fixed electrodes thus forming a differential
capacitor. This differential element makes up the two active arms of a
bridge network which is excited by an AC source of several kc/sec. The
application of pressure to. the diaphragm.displéces the diaphragm from its
equilibrium position thus causing a differential change of capacitance.
This capacitance change produces a bridge error or output voltage which is
amplified and fed to a phase sensitive detector that determines the
direction of unbalance and develops a DC voltagé. The final output voltage

can then be used:

l. in a forward or open loop system and directly recorded;

2. or in a feedback or closed loop system.

Capacitive pressure transducers originally utilized a thin plate
as their sensing element and operated as an open loop system. A thin plate
is a diaphragm which has a restoring force due to its stiffness (Modulus of
Elasticity). The sensitivity of a thin plate is inversely proportional to
its stiffness or mechanical spring constant. Consequently, since these

pressure transducers utilized thin plates that had a high modulus of



elasticity they were not very sensitive to constant accelerating forces;

hovever, they also exhibited a poor sensitivity to'low pressures.

These instruments experienced a high frequency response because
the natural frequency of a thin plate is proportional to the square root of
its stiffness. Furthermore, because the sensing element was vefy stiff,
it experienced only small deflections. Consequently, these pressure trans-

ducers had a high degree of linearity.

In order to increase the instrument's sensitivity to low pressures,
the sensing element was made very thin and was weakly stressed. In essence,
it became a weakly stressed membrane and its stiffness became negligible

compared to its tension.

The sensitivity of a menbrane is inversely proportional to its
tension. Hence, by utilizing a weakly stressed membrane, the instrument's
senéitivity to low pressures increased. However, by making the weakly
stressed sensing element very thin both its mass and mechanical spring
constant'decreased; hence, its sensitivity to constant accelerating forces

did not change.

Furthermore, because of being weakly stressed and very thin,
the sensing element experiences larger deflections when disturbed by
g differential force. This decreased the linearity of the instrument
because the transducer was only linear for very small déflections. However,
because the frequency of a membrane is proportional to the sguare root of

its tension a weakly stressed membrane had a low frequency response. This
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was a disadvantage in that it gave the system a slow response but it
was also an advantage because it made the system insensitive to high
frequency disturbances such as high frequency vibration in an aireraft.
Other difficulties were also caused by the adverse effects of thé

associated circuitry which were costly and complex.

In an attempt to eliminate some of these disadvantages, the
concept of the highly stressed menbrane was developed. By increasing
the tension of the membrane, its frequency response increased, resulting
in a fast time response. In addition, a mechanically stressed membrane
experiences smaller deflections. Thus, the instrument's range of

linearity increased.

However, since the sensitivity of a membrane is inversely

proportional to its tension (stiffness), a highly stressed membrane is

less sensitive to low pressures. In fact, if a highly stressed membrane

is as stiff as a thin plate, its pressure seénsitivity would be equal to
the pressure sensitivity of a thin plate. However, because the mass of
the membrane is very small, a highly stressed membrane is less sensitive
to constant accelérating forces than a thin plate. Consequently, utilizing
& highly stressed menmbrane has improved the instrument's signal to noise
ratio; the ratio of percent of deflection due to a pressure force to the

percent of deflection due to a constant accelerating force has increased.

A disadvantage of a highly stressed membrane is that environ-
mental effects such as temperature changes effect the calibration of the
instrument by altering the tension of the membrane. Hence, in order to

obtain accurate pressure measurements, it is necessary to monitor other



parameters in the system. Consequently, by utilizing a highly stressed
membrane, the performence of the transducer is dependent upon the mechani-

cal properties of the sensing element.

It was anticipated that by employing a weakly stressed membrane
in a feedback loop, the sensing element could be electrostatically stiffened.
By replacing the mechanical stiffness of the sensing element by a stiff
electrical spring the system's performance would be made independent of the
mechanical properties of the menbrane and its linearity would be increased.
Furthermore, its acceleration sensitivity would be less than sensitivity of
a thin plate. Tt is the purpose of this report to analyze and design closed

loop capacitive pressure transducers to achieve this goal.

This report begins with the theoretical design analysis of a
forward joop capacitive pressure transducer. Next, an analysis is made to
evaluate the effects of closing the loop by introducing an electrostatic
feedback loop around the transducer. A closed loop system, utilizing a
weakly stressed diaphragm, is theoretically designed. The investigation of
this closed loop system involves a frequency and dynamic response synthesis
of the system and an analog simulation study. The final portion of this
report discribes the construction of a closed loop system which is used

to experimentally verify the theoretical results.

This report also contains four appendices which deal respectively
with: the theoretical investigation of diaphragm; theory of acoustic
resonators; determination of the transfer function of a capacitance bridge
network with two active differential arms; and the theoretical analysis of

a variable capacitor relating a differential displacement to the resulting

differential change in capacitance.



CHAPTER I

Theory

A. Capacitive Pressure Transducer

Figure L represents a cross secfion of a symmetrical capacitive
transducer. Tt consists of a thin metallic circular diaphragm. The dia-
phragm is clamped along its perphery under a radial tension T. The dis-
phragm has an effective radius "a" measured from the inside edge of the
clamp and an infinitesimal thickness h. It is centrally placed a distance
d, between two stationary electrodes of radius R'. The diéphragm is placed
symmetrically between the electrodes because this configuration leads to
the simplest analysis and represents the optimal design. The transducer

constructed in this manner forms a differential parallel capacitor.

If the transducer was stationary and the diaphragm not ferromagnetic,

three forces can act on the diaphragm.

- 1. Mechanical force: caused by a disturbing pressure AP
F.= vra? AP . /
2. QGravitation force: caused by tilting the diaphragm from its
verticai position by an angle ©
fo = (T‘—&)"’%h ELL RS 2
For this study the effect of the gravitational force on the
diaphragm will be considered negligible and omitted from the

analysis.



3. Electro-static force: caused by the application of a voltage'v
to one or both sides of the differential capacitor while the

disphragm is grounded

Fos = (‘-‘-R'?-) ;zc\z\/z (non-linear) 3

When acted upon by one of these disturbing forces, the resultant motion

of the diaphragm is dependent upon its mechanical characteristics. Appendix

A contains a detailed study‘on the theory of diaphragms. From equations in this
Appendix, it is assumed that the diaphragm used inthis study'iséhafacterized as a
menbrane. When the diaphragm is subjected to a uniform préssure distur-

bance Pb, membrane theory shows that the resultant deflection is assumed

to vary linearly with pressure provided Bds 2 5.0y,

do
This relationship is expressed by Equation A-52

= v\
=l - (&) A-52
where T|,, the center deflection is A

T]o Ad° 47T A-51

and T is the deflection measured from the equilibrium position of the

diaphragm.

When meaSufed from the surface of the fixed electrodes, the
electrode spacing becomes
- + - [ry\? 4
d=do ndo 1~ (LY
where the plus or minus signs depend on whether the diaphragm is deflected

towards or away from the reference electrode.
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B. Capacitance Bridge

Figure L4 1is a simplified diagram of a capacitaﬁcé bridge with
two active arms excited by a constant frequency a.c. source. The two
variable capacitors correspond to the two sides of the differential
pressure transducers. The capacitance of each of the four elements is
egqual to the capacltance of one side of the differential transducer with
the diaphragm in its undefiected state., Equation D-2 in Appendix D

expresses the capacitance of this parallel plate capacitor as

C = kEo A = kﬁeTT R'z
° do ag D-2

When the diaphragm is in its equilibrium position, all of the bridge
elements are of equal capacitance and the bridge is considered to be

balanced. The balancing relationship, as taken from Appendix C, is

C|C4 =C‘3CZ 0—3

When this equation is satisfied, there is no output voltage from the bridge.
But when the diaphragm is subjected to a disturbing force, it is displaced

a distance My from its equilibrium. Since the capacitance of this symmetri-
cal differential capacitor is inversely proportional to the electrode spacing,
a differential change in the spacing, A4, will result in a differential
change in capacitance, AC,, on each side of the transducer. Appendix D
derives an equation relating the variation in electrode spaging Ado to the
resulting capacitance change ACy for a variable capacitor. To a first order

approximation in.£§§ this relationship is given by Equation D-11

SR Ade
ACQ - 2 K C° d° . D"ll
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The resulting change in capacitance off balances the bridge
and produces an output voltage from the bridge. The expression relating
the bridge output voltage, Vo5 to the capacitive change, AC,, is derived

in Appendix C and is

Y 2 ¢, |+ —
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CHAPTER IT

FORWARD LOOP ANATYSIS
A. Design of the Forward Loop

Figure D shows a schematic representation of the uncompensated
forward loop system. It consists of the capacitive pressure transducer,
the capacitance bridge circuit and an amplifier. The system is also

represented in block diagram form in Figure & .

The first two transfer functions Gy(s) and Gp(s) of the forward
loop system are related to the transducer. An analysis of the dynamics
.of the transducer considers the transducer as consisting of two coupled
sections. The first section is the length of tubing leading to the trans-
ducer and the air cavity that exists between the electrode and the diaphragm.
The second section is the diaphragm. The motion of the air in the cavity is
coupled to the motion of the diaphragm by the volume of air in the cavity

(vhich mutually acts on both sections).

Appendix B explains that the air cavity acts like an acoustical
resonator and shows that the motion of the air in the enclosure is des-
eribed by a simple second order differential equation

\ P + 2§R é + P = P
w2 e Woa — ° B-23

or expressed as a transfer function

G.(s) = RO _ !
. = -2
RN S, 2% ¢ 4 | B-26
(oz
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where
R | B2l
§ = gﬁ:".& j mr\ B-25
R 2mwrt{ YR

This Appendix explains that because of the long length of tubing leading
to the cavity, the damping is principally caused by the viscous friction
in the tubing, while the damping due to radiation loss from the cavity is

comparably negligible,

The volume of air in the cavity couples the pressure disturbance
to the diaphragm. Its motion disturbs the diaphragm from its equilibrium
position. Appendix A contains a détailed study on diaphragms. From
equations in this Appendix, the diaphragm is assumed to have the characteris-
tics of a membrane. This will be proven in a later section. From membrane
theory, the motion of the diaphragm, when acted upon by a disturbing pressure
force, is expressed by a second—order'differential'gquation-with the following

transfer function

G_z (5) = Aéo(s) —_ . ¢ 5
Q):“\D W

where

Whe= Wi = 2:3°95 ,..T__ A-13
(e N m
‘g = ‘ RE o (obtained from Equations
o 23.2T ™ A-22 and A-13) 5-o

The gain K is evaluated under steady state conditions in this same Appendix

and is found to be equal to

¢ - 9O A-51
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At this point, the analysis can be simplified if the coupling
between the two transfer functions, Gl(s) and Go(s), can be eliminated.
The dynamics of these two second order systems can be uncoupled if their
natural frequencies (or fesonance region) are.in widely separated regions
in the frequency domain. Hence, if w,,, the natural frequency of Gy(s),

can be made several times larger than

np’ then in effect the two systems

are uncoupled. From Equation B-2L4 it is observed that Wnr increases as

the cavity volume decreases., Hence, in order to increase Wnr the transducer
should be designed for a minimgm internal cavity volume. This dimension

is most easily changed by varying the electrode spacing do. Theoretically,
this spacing can be made infinitesimally small, but for practical applica-
tions, this is not possible. There is a relation between the electrode
spacing of a parallel plate capacitor and the voltage applied across the

gap. This is known as Paschen's Iav and must be considered in choosing

the minimum allowable electrode spacing.

Hence, when operating in the frequency rangé of the diaphragm,

the dynamics of the system are unaffected by Gl(s) if wnn\>>.wno' Further-
more, by this requirement, it can be assumed that Lo« ‘Hence, for the

operating frequency range encountered in this analysis, the transfer function

for the resonator may be approximated as

Consequently, by the above requirements, the pressure transducer can be
represented by a second order transfer function whose damping and frequency

are characteristic only of the diaphragm.
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" As previously stated in Chaptér I, the transducer is a differential
capacitor making up two arms of a capacitance bridge network which is
excited by an A.C. source. The capacitance Co of each side of thils variable
differential pérallel plate capacitor is given by the Equation D-2.
When disturbed by a pressure difference, the motion of the diaphragm resﬁlﬁs
in a differential change in capacitance AC, on both sides of the transducer.
This capacitive unbalance on each side of the differential capacitor
(cO + Acq, Co - Aco) producés an output signal from the bridge., From
Appendix C the expression relating the output signal to the differential

change in capacitance is expressed as

Yo . 1 2C [-_.'.____
VE . 2“ C° l ¥ S{RLCo 0—17
Appendix D derives an expression relating the capacitive change‘ACO on

one side of the symmetrical transducer to the deflection of the diaphragm

M . This relationship is expressed as

AC.= T4 BdacK
: © D-11
where
[} R \2
= 2 —(=
K (Q) D-12a
Substituting Equation D-11 into Equation C-17 the following equation is

obtained relating the diaphragm deflection to the resulting bridge output

signal
_Yg_~VEK'{ | 4\=VEK' l
Ade T AL, | )e 44, | 1+ =
ORCo <2 ¢-19
where
VE h \lg %‘N _Q-t
oL = ! 7
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Now as & design requirement, it is desirable to isolate the frequency
response of the transducer from the possible unstabilizing effects of
other elements in the forward loop. The frequency of the transducer is
fixed by the characteristics of the diaphragm. Hence, it is necessary
to design the other elements in the loop such that their frequency is
much larger than wp. It would be preferable to set o >> w,p, but by
referring to Appendix C, it is seen that when Equation 0;19 is traﬁsformed
to bode form, the system's loop gain is attenuvated by the factor o+ Since
it will be required to have a maximum output signal, an atienustion in
gain is not desired. On this basis, the bridge circuit must be designed
such that ¢ < wnD.
Now «, as defined, is inversely proportional to RL and Cy. Since
Co is fixed by the geometry of the transducer, RL is the only variable
control on o. Hence, it is observed from Equation T that in order to

decrease o it is necessary for RL to be very large. Fortunately another

requirement is to have a maximum output voltage from this bridge. This also

requires RL to be very large in order to prevent loading of the bridge.

Figure 34 is a Thevenin equivalent circuit for the capacitance
bridge. Note that since all four capacitors in the bridge circuit are

equal, the equivalent capacitance is also Co.
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In designing a measuring system it is desirable to eliminate
errors such as noise, inherent in the electrical circuitry. ZEquation 8

gives the general equation for finding the noise voltage of a circuit.

oo

ot - AKT 5 R () o K
o

2

i

Boltzmann's Constant s

T = Temp. (degree Kelvin)

R(w) corresponds to the real component of the total impedance of the

circuit. For the Thevenin equivalent circuit under discussion,

Rl. R\—
2 (iMpEDENCE) = y R\ =2 == =
(ime - Ve AWC R |+ (WCRY

Hence, when this expression is substituted into Equation 8, the noise

voltage for this circuit is evaluated as

el = !%;i | | 10

For all practical purposes, the Value of this term is small and can be

neglected from the analysis.

A further simplification can be made in this analysis by re-
guiring the bridge to be excited by a high frequency A.C. signal. Since
o < wp, it can be shown that by setting (i, the frequency of the A.C.

source, much larger than wn> the following approximation can be made

(2 =
thus

.E(__.éc_.}

2

By this assumption, Equation C-19 can be rewritten as

AAO 4‘40 Q-ZS
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where VE = VE sin Ot. Since the output will be rectified, it is only
hecessary to consider the absolute magnitude of VE. Thus, the transfer
function G3(s) relating the rectified bridge output to the displacement

of the diaphragm is expressed as

-

)
3 AAo (5\ 4de
Hence, by requiring Q2 >> o, the output becomes insensitive to changes of

the bridge excitation frequency. This approximation has also been demon-

strated in Appendix C where the proof is worked out in the time domain.

The fourth element, Gh(é) in the forward léop amblifies the
output voltage from the bridge. Hence, the rectified output voltage of

the system is expressed as

N = A\jo
where
64(55 AVATEN

By combining Equations 5, 6, 11, 12 an éxpression for the complete
forward loop transfer function is obtained. This expression relates the

output voltage ~ to input pressure disturbance PD as follows

G(S\: 6‘(53 6.1(5\ G_s(s\ 64 = = VALY = P&SS Aa-»(s) Ve () '}_{_&E\

R\ R Ao A Vo
F] 2 ‘
=V _ A KVe Q& : V5
S - = 2
SARI v Ade AT | & Bas

In conclusion, the mathematical model for the forward loop system has been
reduced to a second order differential equation characteristic of the motion

of the menbrane. The forward loop gain defined as

Rl e
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Summary of the Forward Loop Design Requirements

1 Want a minimum cavity volume 'for the transducer in order
Y
. that

A, wn?\ >> Wop
B. CGy(s)=1

C. Consequently Gl(s) and Go(s) do not have coupled modes.

(2) Want Ry, very large
A. Maximum output signal
o < Wyp
(3) Want Q >> o such that
A, G3(S) = gain

B. G3(s) will be insensitive to small frequency variations

(4) Maximm Gain
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B. Construction of the Forward Loop

The forward loop system of the capacitance pressure transducer
consists of four main parts: the diaphragm, the electrodes, the dia-
phragm housing, and the bridge network. The design requirements for this
system have been given in the previous section and its construction will

now be considered.

A. Diaphragm

The diaphragm is made from a 1/2 mil mylar film with a 1/4% mil of
aluminum vacuum deposited on each side. Consequently, h, the thickness
of the metallic diaphragm is 1 mil. The diaphragm is circularly clamped
under a radial tension, T, of 0.10 lbs/in or 17.5 newtons/m. Tts
effective radius, a, is 0.75 in. The natural frequency,w,,, of the dia-
Phragm is a function of its mechanical and physical properties. Section
A-5 of Appendix A derives a graphical method of determining the "Funda-

mental Natural Frequency of a Stretched, Circular, Clamped, Flat Diaphragm.”

As outlined in that section, the first step in determining the

natural frequency of the diaphragm is to evaluate Equation A-Ls5

oT 12e(1-5%)
m  (E+T)h (A-k5)

For the diaphragm under study
o = POIsRoN's RATIO = O.40
s .
E = TENSIWLE (YOUNGS) MODULLS = 5.5%/0 psy
i M
0 7§~\\ =ph

o= Weighl densiiy = .38 (ez-4) = 86 Is/y

1
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Substituting these values and the dimensions given above into Equation A-LU5,
it is evaluated as 1025. With tﬁe aid of Figure 29 and Table 2 the

frequency of this diaphragm is theorstically found to be 100 c/s. From

this analysis, it will be assumed that this diaphragm has the characteristics
of a membrane. However, experiments on the diaphragm found it to have a
freqguency of only 60 c¢/s and a damping of 0.1 (see Figure 31). This
ekperimentally determined vglue will be considered the correct frequency

of the diaphragm and will be used for the theoretical analysis.
B. Electrodes

As previously explained, two circular aluminum electrodes are
used in this system. Fach electrode has a 0.75" radius and has an input
port consisting of a 4" length of copper tubing 0.25" diameter located
along their central axis.

The electrodes are symmetriéally placed at a fixed distance d,
from both sides of the diaphragm. 1In accordance with the requirements
set In Chapter 2, it is necessar& to minimize the electrode-diaphragm
spacing. Tt was determined that setting 4, = 4 mils satisfies the design
requirements. The only restriction now is on the maximum voltage that can
be applied across this air gap. From Paschen's curve given in Figure 2,
it is seen that the maximum voltage is a function of the plate separations

and the alr pressure.
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C. Diaphragm Housing

In order to esté,blish the_ desired diaphragm-electrode space,
a teflon ring I mils thick is cembrally placed on each side of the
clamped diaphragm. The ring has an I.D = |.Sw. and an 0.D = 2w,
By tightly clamping the electrodes sgainst each ring, an internal
cavity with a volume of 4 euis (W) = 7IX0 1y is created on each
side of the diaphragn. The' inlet port on the electrodes makes each
eavity accessible for pressure measurements. As described in Appendix B,
when a long length of tubing is connected to these ports an acoustical

resonator is formed on each side of the diaphragm.

\

From Equation B-24 the natural frequency for the acoustical

system is calculated as 3000 ¢)g | Thus, by choosing an electrode-

diaphragm spacing of 4 mils the internal cavity volume is minimized.

Hence, as seen from Equation B-2k Wna becomes much larger than w As

no -
explained in Chapter II this satisfies the requirement needed to uncouple

the dynamics of the acoustical system from the dynamics of the diaphrégm. :

D. Bridge Network

As previously explained in Chapteré I and II, the electrical
circuitry of the forward loop consists of a capacitance bridge network
with two active arms. The diaphragm-electrode configuration described
above represents a differential capacitance pressure trénsducer. The
two sides of this variable capacitor ‘make up the two active elements of
the capacitance bridge. This arrangement is schematically represented in

Figure 4 . 1e capacitance of each side of the transducer is equal
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and is a function of its geometry. For the above dimensions, the
capacitance of each side of the transducer can be evaluated from

Eqguation D-2 as

_ keewdl

C - 3 = |00 ¥ 1o'* EARMDS

o

However, experimental tests on the transducer found it to have a capa-
citance of 240 puf. In order that all four capacitive elements in the
bridge network are equal, the two fixed capacitors are also chosen as

2L0 pur.

The last design requirement on the circuitry is for Q, the
frequency of the A.C. bridge excitation, to be much larger than «.
Now ¢ is expressed as

\
Rela

RL is chosen as 30 mega-ohms and Co is given above. For these values,

o is evaluated as 300rad/sec. Hence, by choosing Q = 20 ke, Q >> o or

1R

<< 1 and the approximations made in Chapter II are valid.

P
o
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CHAPTER IIT

Closed Loop Analysis

Table 3 summarizes some of the important characteristics
of an open loop capacitive pressure transducer for three different types
of sensing elements. Now, it can be generally stated that although a
forward or open loop system'has the advantage of featuring a simple and
stable operation, it can also have some undesirable features. One
negative consequence of an open loop system is the dependence of the
controlled output on the calibration of the intermediate components.
. Another disadvantage is that the output varies due to load changgs, ex-

ternal disturbances and noise within the system.

The question now arises as to if it is possible to design a system
to minimize these disadvantages. Now, in general, if a system’s require-
ments cannot be satisfied by an open loop system, the desired accuracy of
control can be obtained by employing a closed loop system. In this type
of system, the output is determined, fed-back and compared with the system's
Input. The difference between the actual state (output) and the desired
state (input) is the error or actuating signal. This signal is used to

drive the actual state towards the desired state.

The important differences between closed loop operation and
open loop operation lie in the feedback path. The effects of feedback

which can also be classified as advantages can be summarized as follows:
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Because the closed loop system is accuated by the error
signal, it continues to function until the error is reduced
to zero. Thus, feedback continuously reduces and eliminates
the effects of errors present in the loop and consequently

maintains a high degree of accuracy for the loop.

Due to this increase in accuracy for a closed loop system,

it is unnecessary to periodically calibrate the instrument.

Feedback reduces the effects of nonlinearities which occur

in the loop.

Feedback increases the bandwidth of the open loop system
thus improving its dynamic response and reducing its time

constant.

If the open loop gain is very large, it can be shown that
in a closed loop system, the input-output characteristic

of the system is mainly a function of the feedback element.
Thus, by using a closed loop system, the forward loop char-
acteristics are, in a sense, replaced by the feedback

characteristics.



- 30 -

Although a closed loop system offers several advantages over an
open loop system, its major disadvantage is complexity. Furthermore, a

suitable margin of stability for the system must be obtained.

Now the ultimate design goal in this report is to produce a
pressure transducer with an extended frequency response that is capable
of accurately measuring very low pressures. From the above discussion
and as discussed in the introduction, it appears that it is possible to
achieve this goal by uﬁilizing & capacitive pressure transducer with a

weakly stressed membrane in a closed loop system.

A practical method of closing the loop is by electrostatic
feedback. In such a scheme the output signal from the bridge after being
amplified and rectified is fed back to the electrode on the high pressure
side of the transducer. With the diapliragm at ground potential, this
voltage creates an electrostatic force, Feg» Which opposes the pressure
force on the diaphragm. The effects of these two opposing forces on
the diaphragm are to effectively stiffen the diaphragm thereby increasing

its freguency respounse.

By following a procedure similar to that outlined in Section 1
of Appendix D, an expression for the total electrostatic force, Fogr» oOn

a deflected diaphragm can be obtained as follows
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Foe = g ke, (&™) 2 r dr | 15
o 2 (doxrnY
WHERE

- n - 6]

Now to a first order approximation in A4, , the above integral becomes

4,
,'AAQ . ; _ﬁ:z
FERATEIN S B S o B
where
- Keg(TZF’\)\I-z
° 2d,

is the electrostatic force of attraction between the undeflected (or nulled)

diaphragm and the electrode.

When the electrostatic force equals the pressure force, the

diaphragm is nulled; i.e., Ad = 0 and the following relationship holds

Fes E

AP :::‘ \7

where AD = surface area of the diaphragm. Hence, with the system set up in
this mammer, the differential pressure force is nonlinearly related to the

square of the rectified output voltage.

To simplify this analysis, it is preferable to linearize the
above relationship. If a voltage is applied to both electrodes of the

transducer, it is possible to obtain a linear pressure scale for the
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instrument instead of a quadratic one. This can be accomplished as
follows. With the diaphragm in its null position, an equal voltage,
Vi’ is applied to the fixed electrodes of the transducers. When the
differential pressure deflects the diaphragm, unbalancing the bridge,
the diaphragm movemenf is opposed by an electrostatic force resulting
from an increase of voltage on one fixed electrode and a decrease on

the other. The differential change in voltage is denoted by v.

M .
To a first order in —2 +the net electrostatic force on the

o
diaphragm 1s

AT, - <vR2>keo{(v T I LA~ T

2 ke (T\‘Rlz) _ \Iz \ +('\f 2 K’ Ac\o_\ 19
AR, = ke Vv - Vi i

dg )
Since the voltage required to compensate the maximum pressure differential

cannot exceed Vi’ it follows

_‘2.[%:@’} < | 4 20

In fact, V:,L will be chosen such that v << Vi'

Now from Equation D-11, C-30 and 12, the following

expression is obtained

Ade
YA _ A< 2

B

If AX‘K SNV then Equation 2| 1s less than unity. This assump-

tion toegther with Equation 20 makes the second term in Equation 19

negligible. Hence Equation |9 can be written as

2k¢. wéz VL-V 22

AF‘_'S d
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Since V_ is a constant, Equation ZZ can be written as
i

AT, = 2K v wHere K = ‘S_Eo:\ffz Vi 2%

‘Therefore, by applying a voltage Vi to both electrodes, a linear pressure
scale is obtained for the transducer which directly relates the differen-

tial pressure disturbance to the rectified output signal.

Another method of demonstrating that this technique would
result in s lineér pressure' scaie is to choose an operating poinf Vi
along the nonlinear curve expressed by Equation 3 and perform a linear
perturbation analysis about the operating point. By carrying out this
analysis, it becomes obvious that the constant K; in Equation 273 corresponds
to the slope of the nonlinear curve at the operating point. This slope
then has to be multiplied by 2 as in Equation 23 because there is an
electrostatic force being contributed by both sides of the differential
capacitor. Throughout the remainder of the analysis, the constant K3 in
Equation 23 shall be interpreted from a graphical iinearization of

Equation 3 .

Since this transducer measures differential pressures, AP, the
operating voltage Vi may be chosen as any value as long as v << V. (Note:
v Vi cannot exceed the linmit set by Pzaschens Iaw.) The particular operating
voltage only determines the slope of linear pressure scale and consequently

the sensitivity of the pressure - output voltage scale.

Now, in particular, three operating voltages, Vi’ are con-
sidered along the nonlinear curve. Figures 7, 8 , and © are plots

of Equation 3  respectively showing the three operating voltages at
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10v, 100v, and 500v. The constant, Ki’ as previously explained, corres-
ponds to the slope of the tangent line at each operating point and these
values are respectively obtained from Figures 7 , 8 and © as

(8.2 x lO_h),(8.2 x 10_3) and (41.x 10—2). These values will be referred

to respectively as K105 K00, and KSOO'

Recall from the open loop analysis that for small deflection
of the memwbrane, the displacement is linearly proportional to the disturbing

pressure by the following exXpression

A-51
In the forward loop analysis pP is the input pressure disturbance, but
in the closed loop system AP becomes the actuating error signal. Thé
error signal for this system is the difference between the inpubt disturbing

pressure, Pp, and the feedback "electrostatic pressure” P The electro-

es*
static pressure is created by the electrostatic forcé acting on the surface

area, AD’ of the diaphragm. Hence, AP is a difference of pressures and is

expressed as

AP = P, =Py 2.4

Thus, for & closed loop system, Equation A-51 becomes

Ad°=~§—1—_—{t’o—l’es | 25
Ad - Of P _— TTR'I k&oz-\/‘ -
° 4T ® ™ od dz ze.
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From this expression it is obvious that the "electrostatic pressure"

being fed back is expressed as

Fes ! wR* ke, 2 Vi
. 1 - A —V_ 27
PQS AD T o A:

Hence, the feedback transfer function H(s) is

Pes (=) = 2 Ki = @i . 28
(D) Ao

Combining Equations B,6 ,1V,12, and 28 +the input-output relationship or

the closed loop transfer function for this system is expressed as

A X

AV O N1 W -l

R () |+ G(SHH (S | 4 _heY B 23
_S:4§_33 +
w:\b (Unb$

where Gy = G, G, G-g G,

From Equation 29 the characteristic equation for this closed loop

system is
6.
|+ - 2A¢ LR =90 ‘30
S_ 4 PRI
Wy Wne
expanding
2.
&% 4 27,08 + Was (1+FYBA) =0 3|
From Equation 3! the closed loop frequency, wrlm and the damping, §;),
for this system are respectively found to be
1)
Wan = “ao {1 +¢xp A 32

?/ - }D
° R ETI 3%
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Hence, it is observed that the effect of closing the loop around the
system has resulted in an increase in frequency of the weakly stressed

diaphragm but a decrease in damping for the system.

A further insight on the effects on feedback on the weakly
stressed diaphragm can be obtained by expressing the second order equation
in Equation 3f in its equivalent mechanical form (mass, spring,damper).

Substituting the following expression into Equation 3

W, = | X 1 = -2
nn ™ o 2 rK_YT\— 34 ano 55
where - ’
% = mechanical spring constant of diaphragm “’/in.
B = damping constant
m = mass of diaphragm

it is rewritten as

M. B g
X S
or
Q* LB ,&+,\4¢XA@’; ) 37
™ AAD
Note: 1. From Equation !4 2

¢ = v n;/l'N_

X = b

N

2. Similarly

3. Hence, ¢ can be expressed as
=
"‘( where
C" is a constant in units of in2. and

% is the mechanical spring constant for the diaphragm.
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Consequently, in Equation 37
X AY@."' = X % AY B = C ARG

Hence, the characteristic equation is rewritten as

*"'CIAY Bl.' - O '_7)8

2
+ B s +
S ™ o

From this equation the closed loop frequency and damping for this system

are respectively found as

w’np - (a?( +:;;AXB( 59
\§; = L 5 —— 40
2 X+ o, AY G,

This result is identical to Equation 32 and 33%

It is observed from these results that feedback has electrically
increased the spring constant of the weakly stressed diaphragm. From
Equétion =8 the nevw spring constant?é for the closed loop system is seen
to be

K= K *rCAXE 41
Since the diaphragm in the forward loop is weakly stressed, its mechanical
spring constant & is a very small value. Consequently, if the loop gain
is large
% < .Cl AYX B, 42

Hence, Equation 4! can be expressed as

L
X = ¢, A¥E
Similarly, % in Equations 39 and 40 is also negligible.
Hence, the conclusion is reached that by employing a weakly stressed

diaphragm in this closed loop system, the mechanical stiffness of the
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diaphragm is replaced by an "electrical spring". This is a good
accomplishment because this feedback loop has electrostatically
eliminated the mechanical properties of the diaphragm which result in
nonlinear behavior.in the forward loop system. In effect, in a closed
loop system the weakly stressed diaphragm is used as a boundary between
the opposing electrostatic and pressure forées. Consequently, this
alleviates the need to récalibrate the instrument if undesirable effects
slightly alter the properties of the sensing element in the forward loop.
Theoretically, the only errors in the system should be attributed to the

linear approximation of this nonlinear physical law.

Observe that closing the loop around the forward loop system
did not change the order of the system. Therefore, the open loop transfer
function of this closed loop system is still a second order system and is

expressed as

' Kz:
G|626364H == [._S: 5535 \] 4‘3
where Kéf the new open loop gain is expressed as
Kz, = ¥ B A 44

As previously explained the second order system in Equation 43 is

characteristic of the dynamics of the diaphragm (membrane).

From Chapter II the frequency and damping ratio for this second
order equation were calculatéd as
snp = &0 C/s
(A)v\p = -577 R“D/S<<

‘Sb = 0.10
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Figure 11 shows the frequency response for the open loop transfer

function expressed by Equation 43 (for unity gain).
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CHAPTER IV

Closed Loop Stability Compensation

From.the results of the previous chapter, it is concluded
that it is highly advantageous to use a weakly stressed diaphragm in
a closed loop system. It was demonstrated that the introduction of
feedback around the forward loop did not increase the order of the
system. Consequently, the oéen loop transfer function for the closed

loop system remains a second order equation as expressed by Equation 43

Althovgh a closed loop second order system of this sort is
theoretically stable, its frequency plot shows that its phase response
asymptotically approaches 180° in the high frequency region (Figure I/ ).

In designing a control system, the phase margin, that is the phase at the

L

frequency at which the amplitude response crosses the Od‘.b line, is a

good practical criterion of system stability. As a rule, a sufficiently

stable system requires at least a 30° to 450 phase margin.

Referring to the open loop response in Figure i} it is
observed that the maximum frequency at which the amplitude plot could

cross the zero db line and satisfy the above requirement is 790 %s.
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The stability of the system can be improved by extendiﬁg the
frequency at which this phase margin occurs; i.e., extending the freguency
range of the system. This is readily accomplished by introducing a phase
lead into the fesonance and high frequency region of the system and thus
extending its frequency range. To achieve this increase in stability, it
is necessary to “"compensate" the closed loop system. This is accomplished
by inserting into the loop a complex transfer function, G(jw), whi;h has a

positive phase angle in the high frequency region.

The ideal compensation element would be a pure differentiating
function, but this cannot be obtained by the use of passive networks.
Therefore, use is made of a element with a transfer function approaching
that of a differentiating element. It is called a "phase lead" element
or a “"differential controller" and its transfer function is generally of

the form

[+07%8

G = 5 a3 ", > | A4

where 7, , is the time constant of the network and the quantity "m)' is the

"phase lead factor" or "time constant ratio."

Figure 12 shows a plot of this function for several values
of m. Tt can be seen from these plots that the amount of phase lead is

determined by the phase lead factor. This relationship between €ygx and

"m!' is expressed as

<t o 45
eMNx - s)‘u "\. ‘
w4+
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and is plotted in Figure 13 . The frequency at which the maximum phase

angle occurs is

46

-
=

\
Tom,
Above this frequency, the phase lead decreases as the gain increases.

Hence, it is observed that this element acts as a pure differentiator

only in a limited range.

In defining a phése lead controller for this system, care must
be taken in the selection of "m) and 7, . Examining Equation 44 ,
it is noted that phase lead compensation extends the frequency range of
the system. That is, the feedback system becomes "m" time fasfer. But
the open loop gain is attenuated by the same factor. Thus, it becomes

necessary to add an additional gain factor elsewhere in the system to

make up for the attenuvation brought on by this element.

Since it is desired to extend the location of the L45° phase
margin into the high frequency region of the system, a phase lead factor

resulting in at least a 45° phase lead is required. From Figure |3 it is

seen that this requirement is met for values of —“Y—\ < 47 or ™M= 5.8
. ]

Care must also be taken in choosing the time constant 7, , or in other words,

1
3, ‘
It is important that this break fredquency is not placed far to the right

the break frequency of this compensating network defined as o, =

of the frequency of the second order term. A large separation in break
frequencies would result in sharp fluctuations in the phase plot which
would tend to drive the system towards instability (180°) in the response

region.,
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Three values of "m"' are examined; 10, 20, 100 and for each

case resulting open loop response is plotted for several values of
W, . The frequency responses of the resulting com?ensation systems
are shown in Figures l4a , 14, , and |4, for each of the three cases.

Figure 14 identifies the curves in these plots.

Although Figure |4¢ indicates that a lead factor of 100
results in large increase of the frequency range of the system, it also
means that an additional amplification of 100 must be added to the system
to correct for the attenuation of 100 of this element. Thus, although
it is desirable from the frequency standpoint to use a very large m,
there are practical limitations on this value. As demonstrated above,
the attenuating effect of this element increases as the phase lead factor
increases and this loss in gain must be made up for elsewhere in the loop.
Hence, in practice, it is customary to use the value of m,ranging from

b to 10 and in extreme cases, 20.

Based on these requirements, response number 2. in Figure 14a

represents the most satisfactoryresponse for the system. TFor this response

m,= 10 and 7%, = 6;8 or uh=ezaws(:ooyg. As seen from the plot a phase lead
compensation with these characteristics extends the freguency range of the
open loop system to 1400¢/, v 8892 %5 gnd results in a nearly constant phase

response of -135° ranging from ooty te 500%

Now in final form, the open loop transfer function for the

compensated system becomes

G (D GG (NG, () Gy = ABYR 1 Niengs
m, ) —%——b g_;lls +) “1..’3'5

""J:b w'\D

4]
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where the open loop gain is now

\ 48
Kzi = Ag YR =,

The frequency response of this transfer function, for unity gain,

is plotted in Figure !| .
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CHAPTER V

Analysis of the Total Loop Gain

The open loop gain for the compensated system expressed by

Equation 47 is

Ks, = A¢X(3;—;'ﬁ—-. 48

[

where

4T
B, = 2K _ 2 ke (wrR) ¢
¢ Ap

(vro?) d.

KV
X 446

Substituting these expressions into Equation 48 it can be rewritten as

49

¢ Ja
K. = VeK Ki A Vi R
3¢ BnTde M, o

For the values given in previous chapters Ap, K', ¢ and Y are calculated as

Vg = 1LL4v RS,

AD = Trol = L7650 = 1.9 x 10~ w2
K'= 2-(&) =i

$ = 52.0x0° "/t

Yy = .44 x10°V/m

These values are a function of the construction of the instrument and will

be considered as open loop constants independent of the feedback path.
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The feedback gain, B4, is characteristic of the linearized
feedback path. In Chapter IV three operating points were considered
for the linearized closed loop (feedback) analysis. Corresponding to

each operating point was a particular gain K;. These were calculated as

Kig = 8.2 xio "

Kipo = &.2xi0 "

I‘<5oo = 4 xi7
Hence, for @ = —Eio

Bio = 1.44

Progop = 14-%

Bsoo = 7z0.0

The subscripts indicate the particular operating point. Corresponding
~to each ‘Bi , there is also a particular amplifier setting Aj for the
forward loop. Hence the open loop gain KSi is now reduced to a function
of the particular bperating point on the nonlinear curve. Substituting

" the above values into Eguation 4©® , the open loop gain is written as

K

1l

3i ¢ X.ln:‘&g A
K3(10) = Ao (o-o258)
K3(100) = Aee (o.258)

K3(500) = Asee (12:9)

The selection of the open loop gain settings result in a compromise
between stability and performance. The open loop gain is either chosen
small in order to be safe with respect to stability, hence, the servo

is soft and not very accurate, or the servo is stiffened by increasing
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the gain in order to improve the static accuracy but at a loss of

stability.

As seen from above, the final value of the open loop gain is

controlled by the variable amplification factor Ai'

The analysis of the open loop gain shall now be considered
in two parts. The first part involves an ahalysis of the freqﬁency
response of the system to determine the amplifier settings. .The second
part is a stability and performance synthesis on the dynémic response of

the system.

A. Frequency Response Analysis

Figure Il shows a frequency plqt of the compensated closed
loop systém for unity gain. In Chapter V it was explained that the
introduction of phase lead compensation would increase the stability and
extend the frequency range of the original uncompensated system. By
extending the frequency range in this manner, the frequency at which the
amplitude response could cross the of 1ine corresponding to a 45° phase
margin was increased. Now, with the apprﬁpriate gain adjustment, the

maximum frequency at which a 45° phase margin can occur is 1400 %5

The gain required for the amplitude plot to cross the 06‘.b line
at $= ld4oo s is the open loop gain for the compensated
system. To find this gain, it is first necessary to evaluate the ampli-
fication factor A; for each operating point. This is accomplished by

first expressing ¢ \KTL @ in decibel units. These values are then
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added to the amplitude response curve shown in Figure !/ . This curve
is presently plotted for a unity gain factor. This procedure is sketched
‘in Figﬁre 16 a, b and c. Now, the vertical distance this plot must be
moved again such that it crosses the zero db line at 49 /g

répresents the amplification Ai associated with each particular operating

point.
From Figure /% it is seen that the fesulting amplifications
are
A = 3,%70.0
Ajgo = 337.0
Asgp = 6.4

Table 1 summarizes these results and computes the total open loop
gain for each operating point. The open loop gain for all three cases
is 87. This should be expected since each of the cases have identical

stability requirements.

Hence, the open loop transfer function for the compensated

closed system is written as

=
87 aza !
G(S)\-\(s) = = Lzs 50
> + %30 ¢ 4 = +1
(31 (2717) G288 o

B. Dynamic Analysis

A convenient means of synthesizing the dynamic response of a
linear control system is by using analog simulation. Figure !”7 represents
the analog circuit of the closed loop control system.

The open loop transfer function of this circuit is given by Equation 50.

Figure 17 1ists the potentiometer settings required to simulate the
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exact dynamic response of the system. The system is time scaled such

that ¥ = 1000t.

Figure |9 shows the time response of this system (Gain = 87)
for a stép input. Now as a rule, a good control system should be de-
signed for

.2 <« M,= 1.5
where Mﬁ; the resonance ratio, is the maximum oufput to input ratio of
the system when by a sinusoidal input. For a secohd order system, the
resonance ratio is a function of the damping ratio, €. This relation-

ship is given by Equation B! and is plotted in Figure 23 .

Moo= ! » 51
m =

23.}1-3’
This functional dependence is also observed from the amplitude frequency

response shown in Figure Il for a second order system.

For a second order system, the time response to a step input
is
-ﬁwnt E '
th\ = ) + ?_wqw, SHJ[QLJ _{rf + CoSs @{)] 52
l - -gz

This response is plotted in Figure 18 for several damping ratios.
From this plot, it is observed that there also exists a relationship
between the maximum response Y .. (or maximum overshot ?os(max)) and €
for a step input. By differentiating Equation S2 and equating the

equation to zero the time, t , at which Ypgx occurs is found to be

T 53
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An expression for Y .. is obtained by substituting Equation 53 into

Equation 352 .

| - AT 54
Yuax = | + € V=3
or
L -
Yos(oan = Y=l = € V=1

This result is plotted in Figure 22 , TFor a good servo system, the

maximum overshot for a step input should be
O.Zd < \(OS(MH\Q < ©0.32

This corresponds to a damping of

O‘SS<§ 40‘4'5

Since the step response of this system, shown in Figure {9 ,
resembles the step response of a second order system, it may be assumed
that Equation ! and 55 , as derived for a second order system, can

also be used to analyze the dynamic response of this system.

From Figure 19 Yos(max) = «575. Thus, based on the above
assumption, the appropriate values of £ and M,as taken from Figures £2
and 23 are respectively 0.16 and 3.175. Since this time response does
not satisfy the stability requirements stated above, it is necessary to

modify the present system to obtain the desired response.

This is easily done on the analog computer by varying the systems
total loop gain. It is found that a decrease in loop gain results in a
decrease in Yos(ma.x) and consequently a decrease in § and M..: Figures 2P a
to 204 respectively show the time response for gain settings of 87(3/4),:

87(1/2), 87(1/k) and 87(1/10). Optimm stability and dynamic conditions
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occur in Figure 20¢ for a loop gain of 87(1/4). For this response
Yos(max) = .25 and from Figures 24. and 23 , § and M, are to be respectively

0.40 and 1.38.

Although decreasing the loop gain results in the desired time
response and improves dynamic stability, it reduces the static accuracy
of the system. The static or steady state error, e, of the system is
defined by the final value theorem as

€= Limm S EWG) S6

S—» O

where
Els) = = R(s)

. _ .
I+ G (S MCS) L G = GGG Gy, Gy 7

For R = _‘5 (step input) the steady state error for this system

reduces to

| + Aiqsx‘a‘.Tm LooP GAN

Thus, as the low frequency or D.C. gain (loop gain) decreases,
errors tend to predominate in the system as seen from Equation 58 . It is
required that this control system operate with less than a 0.0l static error,
For the present gain of 87(1/k) the static error is 0.046 and is consequently

insufficient for the desired accuracy of the system.

In order to improve the system performance, it is necessary to
increase the low frequency gain. The static error can be decreased by a
factor "b" (i.e., low frequency or loop gain increased by b) if a complex
element having a value "b" at low frequencies and unity at high frequencies

is Introduced into the system. It is important that the phase and amplitude
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characteristics of this element do not affect the resonance or high
frequency region of the system because the desired stability and optimum

dynamic response have already been established for these regions.

An element that produces this type of control is called an
"integral controller" or "phase lag compensator." Its transfer function

with an additional gain, b, is expressed as

b=z
Gy = b L7025 s 58
] +b7, 8 ’ w, = T2
Wi = o

The amplitude fredquency response of this element is plotted in Figure 1o
for several values of b. The frequehcy phase response for a lag compen-
sator is the negative of the phése response for a lead network. Hence,
Figure 12w is applicable to a lag element if the phase angles are con-
sidered negative and b = m. The time constant of this lag network, 7%; B
is chosen such that G%=-%;=xas&2in order that the phgse lag characteristic
of this element does not affect the resonance region of the system. By

choosing b = 4 and consequently wé’ = BLiggthe total loop gain of the system

is again equal to 87. The dynamic response of this system is shown in Figure 2/e.

As b increases or w2' decreases, the amount of low frequency
gain amplification increases. Figures 2la to 2/d respectively show the
dynamic response of the system for values of b = L, 8, 10, and 16 or
0%‘ = 314, 157, 1255 amifssrad/sec. An analysis of these plots shows that

Figure 214 represents the optimum state of the system. For this response

b = 16 and consequently the low frequency gain or open loop gain of the
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system is equal to (87/4)(16) = 348. This results in a static error

of .,00288 which meets the performance specification of the system.

Thus, the closed loop system has been designed for optimum
dynamic stability and performance characteristics. The final form of

the open loop transfer function for the system is written as

S S s
.6,6,6,6.,G, H= 348 e I+ gzs I+ 7es co
= :! < s
(377\‘+ e cze o I+ pEe

The open frequency response of this system is plotted in Figure 24.
The dynamic or time response of the closed loop system to a step input

is shown in Figure 21d.

In summary, a closed loop capacitive type low pressure trans-

ducer has been theoretically designed having the following characteristics

Radial tension in the membrane | = 0.10 ““/.;s
Natural frequency of the diaphragm = 60%,
Closed loop damping ratio = 0.ko
Resonance ratio M = 1.38
Maximum overshot; Yos(max) = 0.25 per tewt
Accuracy = 0.003

Frequency = 1000

Open loop gain = 348
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CHAPTER VI

Experiments

The purpose of the experiments is to verify the theoretical
results obtained in the previous chapters. A closed loop capacitive pres-

sure transducer utilizing a weakly stressed membrane has been constructed.

Experimental Set-Up

The forward loop section of the system consists of the capaci-
tivé pressure transducer and the bridge network as outlined in Chapter II.
The uncompensated clqsed loop experimental system is schematically shown
in Figure 32. As seen from this figure, the A.C. error signal from the
bridge is applied to an isolation amplifier and an A.C. amplifier which

has a combined gain of about 15.

In the phase sensitive detector, the amplified error signal from
the bridge is compared with the reference signal. As shown in the figure,
the reference signal is derived from the bridge excitation source. This
unit yields a D.C. output voltage proportional to its amplified A.C. input.
The polarity of the D.C. output voltage is determined by the phase relation-
ship between the error signal and the reference voltage. This D.C. voltage

is then amplified and fed back to the transducer.

The cathode followers shown in the system are used for impedance
matching. Furthermore, each electrode has a D.C, bias of 150 volts, that
determines the operating point for local linearization of the system as

explained in Chapter III.
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Open Loop Experiments

Several clamped circular diaphragms were constructed which had
natural frequencies in the order of 50 to 100 c/s. Figure 31 shows a
typical dynamic response for the open loop pressure transducers. The closed

loop experiments utilized a diaphragm which had a natural frequency of

approximately 100 c¢/s.

Experimental System

Fach element in the loop was designed to have a small time constant
as compared to the time constant of the diaphragm. The ripple from the
rectified excitation volbage of 20 kc/s was filtered out by setting the
break frequency of the detector at 1000 c/s and the break frequency of the

two D.C., amplifiers at 10 ke/s.

This closed loop system was found to be stable for a gain less
than 0.2. However, at 0.2 the system oscillated at a frequency of 5 kc/s
which corresponded to the time constant of the capacitive bridge circuilt.
At this gain, the closed loop system worked as an R.C. oscillator and oscil-
lated at its natural frequency of 5 kc/s. To verify that this was due to an
electrical time constant and not to a mechanical time constant, the variable
capacitors of the preésure transducers were replaced by two fixed capacitors.

It was found that this system also oscillated at about 5 ke/s.

To reduce the open loop gain at 5 kc/s, the break frequency of

the two D.C. amplifiers were also set at 1000 c/s.

The block diagram for this experimental system is shown in Figure

15. Dynamic tests were performed on this system by exciting the diaphragm
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with an electrical step of 8 volts (or equivalently O.4t microns). The
system was found to be stable for gains of less than 2. However, at a
gain of approximately 2, the system oscillated at about 160 c/s. This
result was confirméd from the plot of the frequency response of this

system, due to the electrical construction of the bridge circuit.

However, the results of this experiment verified the philosophy
of the previous chapters and a new bridge system was designed. The block

. diagram of this system is shown in Figure 32.

Basically, in this system one side of the capacitor transducer
is used as the measuring element. The other side is used as the feed-
back side. In this manner, the measuring element and feedback element
were mechanically separated. Testing fhe closed frequency response was
done by applying a pressure step input to one side of the transducer
(with both sides of the diaphragm at atmospheric pressure). The closed
loop frequency response was measured by the rise time of the closed loop
system. Figure 33 gives an example of the response when the open loop

gain was set at 10.
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CONCIUSION

In this report, it was found that the frequency of a menbrane
is directly proportional to the square root of its radial tension while
its sensitivity is inversely proportional to its tension. Hence, it is
concluded that in designing a capacitive pressure transducer for an open
loop system, one is faced with a "sensitivity-frequency response" dilemma.
The open loop analysis showed that if a capacitive pressure transducer
utilizes a highly stressed diaphragm as its sensing element, the system
will have a high frequenéy response but a low pressure sensitivity.
While on the other hand, if a high frequency response is not required,
the system can be made very sensitive to low pressure by utilizing a

weakly stressed dlaphragnm.

Furthermore, it was found that regardless pf how the diaphragm
was stresséd, the performance of the open loop system was dependent upon
its mechanical properties. This resulted in a limited range of linearity
for the system and required the monitoring of other parameters such as
temperature changes in order to determine their influence on characteristiecs
of the diaphragm and if necessary provide a correction factor because of

their effects.

It was theoretically and experimentally estabiished in this
report that by employing a weakly stressed diaphragm in a feedback
system, the system's performance could be made independent of the mechanical

properties of the diaphragn.
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A closed loop system was designed in which the amplified and
rectified transducer output voltage was fed back to the high pressure
side of the diaphragm. This created an electrostatic force of attraction
which opposed the pressure force on the diaphragm, thus nulling the dia-
phragm. The effect of these two opposing forces acting on the diaphragm
electrically stiffened the diaphrsgm. Furthermore, it was found that
by having a high loop gain, the weak spring constant of the low stressed
diaphragm is replaced by a stiffer "electrical spring." Hence, it is
concluded that by employing é weakly stressed diaphragm in a closed loop
system, the mechanical "spring" properties of the diaphragm are elec-
trically eliminated. Furthermore, it was found that by closing the loop,
the frequency of the system increased as the square root of one plus
the loop gain while the damping for the system decreased by the same

factor.

Table 3 gives a comparison of the properties of an open loop
highly stressed diaphragm and a closed loop low stressed diaphragm. In
general, the properties of both systems are identical. The difference
between the two systems is in the measurement range. For the upper
measurement range, for example 1073 mm Hg to atmospheric pressure, the
open loop measuring system is clearly preferable over the closed loop
measuring system (less complicated). For the lower measurement range
(say lower than lO'3 mm Hg pressure), the closed loop pressure measuring
system will start to have an advantage over the open loop measuring
system. The open loop sensitivity of a weakly stressed dlaphragm can

be made larger than that of a strongly stressed diaphragm; consequently,
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the resolution of a closed loop measuring system can be improved

compared to that of the open loop pressure measuring system.

Tn conclusion, the closed loop diaphragm pressure transducer
should be used for the lower end of the pressure measurement range, or

in the case when a better resolution is desired in the lower end of the

pressure measurement range.
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APPENDIX A

ANALYSIS OF DIAPHRAGMS

Al. Membranes - Equation of Motion of a Circular Membrane

Surfaces whose stiffness is negligible compared with the re-
storing forces due to tension are called membranes. The theoretical
menbrane is assumed to be a perfectly flexible, uniform and infinitesi-
mally thin solid lamina stretched in all directions by a force which is
unaffected by the motion of the membrane. It can be looked upon as a two

dimensional generalization of a string.

Before formulating the equations of motion of a circularly
clamped membrane, it is expedient to make the following assumptions to
simplify the analysis:

a) Viﬁration occurs "in vacuo.”

b) There is absence of loss (no internal or external damping).

¢) The system is elastic and its force-displacement characteris-

tics are linear.

d) The maximum displacement is small.

e) Deformation due to gravity is negligible.

f) The circular membrane vibrates with circular symmetry.

Consider an element of area dS = rdrd¢ of the menbrane in Figure Zg,
The radial force acting across the arc rd6 is given by'dFr = Trd@ where T
is the tension in newtons per meter of length. The vertical component

dFy of this force is
df§ =TrdOsnd B A-l

and by assumption d

sin d =~ TANG = 3
or



or

dFY= Tr2y do =Td9[r%)fr:] A-2

3r

The net vertical force acting upon the surface element rdrd@

due to tension parallel to the radius is

(dF ) reir~(4F), = Tae[(r_g.;;)w— (r2) ] =T R (ra)erde  x3

Similarly, the net force in the y direction due to tension perpendicular

to the radius is given by

3 —(3 =T 3
TArI..L\) 2y = T3 ane A4

A6 /gade \ AR
However, since y is not a function of 6 for the case of circular symmetry,

this force is zero.

The net force on the element must equal its mass, mrdrd€, (where
m is in units of mass per unit area) times its acceleration. Thus, by

equating forces

mrdrdo 37 = T3 [pdy
St Sr(raL)drde

v A-5S
and
m ¥y _ _\_3_.[» é.x]
T r or dr
where

2 2
GR AU RR T IE

Sr2 Yy ¢

is the laplacian operator in polar form for a function having circular

[~
symmetry . Now letting d,= -{E the dynamic equation of motion becomes

2
By - 4 Vry
Ry %
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A2, Undamped Natural Frequency of a Clamped, Circular Membrane

A solution for equation (v9 can be obtained by assuming that
in any particular mode of vibration the motion is harmoniec and can be
expressed as
- Jwt
y=fe A-7
where T = T(r) is a function of the radius and w is the frequency of the
mode. Substituting into equation (¢, a second order ordinary differential

equation is obtained, characterizing the ﬁotion of the membrane.

d 2 .
drr‘\ +_"Fé_f} +K'n =0 A&
where
KHe 0
dZ

Equation (9 is a particular form of Bessel's differential equation whose

complete solution with two arbitrary constants is of the form

Nery = AJo(Kr) * BY. (k) A-9

or

yirty = | ATo(kr) + BYo(kr\] et A-92

where Jo(Kr) is the Bessel function of the first kind and of zero order

and YO(Kr) is a Bessel function of the second kind and zero order.

In particular, the analysis is of a circularly clamped membrane
with the following boundary conditions

0

i) M=1, at r

ii) NM=0 at r

]

Qa



At the center, where r = 0, YO(Kr) is undefined by virtue of

its singularity. From its series form it can
P -P
Yelkr)= 2 (p-n! (Xr)
: ALl

be seen that it becomes infinite at r = O and hence will not satisfy

equation (A9 ) under condition (i) unless B = O.

Now Jo(Kr) can also be represented in series form as

ANCOHE —2;.;! (kr)?

or
To(kry= (= L (0 _
(xr) | . ST

Hence, at r = 0 JO(O) = 1 . Therefore, from (i) A = T, and the solution
becomes ‘

Nr) = Mo Jolxr) A-1D
or

Y(rt) = 0o Je (vry e A- 1
From condition (ii) and equation () is obtained an equation for the fre-
quency of a vibrating membrane

Jo (k)= 0 A-l2

Thus, Ka must always satisfy this equation; i.e., it must be a zero of
this Bessel function. The plot of this function resembles a damped cosine
wave; hence, there exists an infinite number of roots to equation &2 which
occur at Ka=~ 2,405, 5.52, 8.65k..... Thus, the frequency of the funda-

mental mode becomes

Ka = 2.405

Lnm _ 2,405

S = Wnw - 2.405 ] T
M - = LTz \_\ -
" 2T 2ol N ™ A-13%
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A3. Damped Vibration of a Membrane

In order to make the discussion of the circular membrane more
realistic, it is necessary to consider the effects of damping forces on
the system. These forces include an internal frictional, the forces
resulting from tng radiation of energy in the form of sound waves and

to the viscous damping of the surrounding medium.

Assume that the damping force per unit area (damping pfessure

Pr) is proportional to its velocity

Pr = —R2L “A-14
v €
where R is a damping constant independent of r and y,but dependent upon
frequency. The introduction of this damping force into the system alters
the original equation of motion. Equation (¢) now becomes

2.
2)Y 4 R 3y '=.ATVZ:y
At Mt

Again assuming harmonic motion

4
y=qe¥' A-ie

A-I5

a second order differential equation is cobtained of the form

2
49 +1dn 4K =0 A- 17
dr? r dr n
where Y, must satisfy the equation
2 2 .2
Y' +‘_RY;\_.’Y“|‘ KA. =0 A-18

Equation (v7) is identical with equation (\8); therefore, its solution, as

before, is A JO(Kr). The same boundary condition also holds; thus, once

3

again, the equation Jo(Ka) = O is satisfied by the same previously deter-

mined values of Ka, i.e., Ka = 2.405, 5.520....

For damped vibrations, however, the allowed frequencies are not

given by w .., = Kd, but instead are determined by the imaginary part of v.
nmM [N )



Solving equation @19, Y is expressed as

= -Rix 2= R
‘Y\ 2 J\, KA. Er"n'\'z. . | A-19

The general solution of equation (1§ is now

y= Ae@T(xny e A-20
where
W= \‘ Ko™~ 2,5%'\ = \"\6.\‘51-* :*EZT“\ A-21
The fundamental frequency is obtained by setting K = 2'2?5 .
Sam = Lt = 28051 | 1~ o 1" A-22
2T 2o AN M 2327 ™

Thus, it is concluded that the amplitude of vibration of the membrane is
exponentially damped and that the frequency of oscillation is slightly

less than for the corresponding undamped case.

At. Thin Plate

A stretched diaphragm in which the restoring force is due entirely
to its stiffness, as opposed to tension, is called a thin plate. Theoreti-
cally, a thin plate consists of a perfectly elastic, homogeneous material
that has a uniform thickness considered small in comparison to its other

dimensions.

The analysis of the thin plate will be limited to the symmetrical
vibrations of a clamped circular diaphragm. The assumptions, as previously

stated for a membrane, will also be valid for the thin plate.

The mathematical derivation of the equation of motion of a thin
plate is more involved than that for a membrane. Therefore, a rigorous
development will not be present here, but merely the resulting equations

will be stated. The steps in formulating this equation as well as others




used in the discussion of the diaphragm can be found in the treatise

by Rayleigh (Reference ),

As taken from the above reference, the equation of motion of

a thin plate is:

\ 311 v*
T | A23
where E = Young's Modulus
z . — .
C'z: R h = thickness
2
12 (1-5%) p = volume density = 'u_n%?i%‘I

Poisson's Ratio

Q
Il

Again the assumption is made that the motion in any mode is harmonic as

described by equation (A7)
t
y(rt) = rye’®

Substituting this expression into equation (2%, the equation becomes

4 _ 2
Ven =
or »
V:- q = Kj‘q Where K: = (—L—E’—Y A-24

Expressing in.operator form, the differential equation becomes

(W -xi)n=o0

A-Z4a
Now the linear operator is commutative; thus, equation (@-24) can be
factored giving .
2 2 2.~ 2 _
(W) (W -K)n =0
or .
2 2 2
rsn . r¥ + Krn-=0 A-25
ED 3 0 N

Therefore, T can be a solution of either (Vr2 + K%)'ﬂ = 0 or (Vr2 - Kf)ﬂ = 0.
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The complete solution of equation (A-25) is the sum of these
two solutions. Noting that the first of these equations is identical
in form with equation (8), its solution will also be the same, namely,
N = AT (xr) A-26
The solution of the second equation is obtained from the first by re-
placing K by JK and is written as

N o= BT (3w
or '

N = BIo(Kr) A-21
which is the so-called hyperbolic Bessel function whose independent
variable has imaginary‘ values. Thus, the solution of equation (A-25)

is
N = AJe (KT + BT, () A-28

Since equation (v28) only contains two, rather than four arbitrary constants,

it is not the complete solution of the differential equation. But, as

with the membrane, the remaining constants are zero by the condition that

at r = 0 the amplitude of vibration must remain finite.

To evaluate the constants, A and B, two boundary conditions are
necessary. Again considering the case of a rigidly clamped diaphragm,
the following two conditions for a thin plate are cobtained

i) atr=a ; M=0

1

ii) at r Q'%—E:Slope=0

-

When the first of these conditions is applied to equation Q«-zs) the follow-

ing relation is obtained

O = A7V, (R} + B I (Kf’q A-29
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and applying the second condition to the equation

O = A ASO (K,“*\) + B AI@(KSQ) A-3%0
dr dr
but since
d308) _ KT, (kay AnD dTolke) | kT (ko)
dr ) dr - ! >

the equation (A-30) takes the form
O = =~ ARJ (kg) + BKI, (Kg) A-302

Rearranging terms in equations (A-29.A33 and dividing one by the other,
a frequency equation .is obtained which must be satisfied by particular

values of Ka for a solution to exist.

3'0 (K,Q) —_— - Io(\’\,&\ A'B,
T (xe) T (kQ)

Now since both the Bessel functions I, and I+ are positive for all values
of Ka, a solution occurs only when J, and J, are of opposite sign.

From a table of Bessel functions, it can be seen that the equation is
satisfied by

K;:\:S.ZO y ©.30,02.44, ., ...

or approximately by

KS\C:“T\' “W=1,2,5, ..
Now from equation (A-24)
4 w) \2
K:= (%)
= Wwiiep (=5
EW
or
w,, = Kf\[_@‘_ A-32
12p(1-5%)

where upon setting K,= 3%39 the fundamental frequency is given by

2 e
S = e - (3.20) _\3_5 E A-33
vz 2 0%y 2 p(1-57)
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A5. @General Case: Graphical Solution for the Fundamental Natural

Frequency of a Stretched, Circular, Clamped Flat Diaphragm

Experiments show that, although membranes and thin plates exist
in theory, they are not easily achieved in practice. ﬁnless a diaphragm
is extremely thin or stretched very tightly, deviatiohs occur from the
theoretical results calculated for membranes due to the inherent stiff-
ness of the material of the diaphragm. For this reason, a general case
must be considered which takes into account restoring forces in the dia-

phragm due to both tension and stiffness.

Once again, the derivation of tﬁe equations of motion for this
general case is quite complicated and thus will not be included here.

The equation of motion as taken from Reference 7 is:

(E+T) N LT gt - P Y
S W E TR -

where P is now a traverse pressure or a resultant disturbing force on the
diaphragm and the added term T to Young's modulus occurs because the added
tension increases the effective modulus. Again, a symmetrical conditim
is assumed and thus no variation will occur when 8, the polar angle, is

. varied.

equation (-34) can be written as

3
(BTN gty -T viw -P —co?n=0 A-34a
125 (1-5%) R B it

If a harmonic motion is assumed in all modes, i.e., y(nf§=r“f)e?ui
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Note that from this general equation, the equation of motion for a
stretched membrane can be obtained by letting h —» 0 and similarly by
letting T - 0, and the equation of motion of an unstretched thin platé

is obtained.

As previously seen, due to the boundary condition that the
center deflection of the diaphragm is finite, Bessel functions of the
second kind are not permissible. This condition thus eliminates two of
the four arbitrary constants needed to solve equation (A342). A solution

of (A242) then is of the form
N = Ada(Kir) +BI (K.¥) - B __ A-35
. R
where K; and Ké satisfy the equation

ETh 4T k'-w® =0
(2o (1-5%) ™
letting
C = (E +'I“\Y\2
' ‘\Zp(\“si) )

the two solutions are

K, = Jﬁﬁ"rc.co‘ -4 A

2.¢c,
<2 "";:'
Kz = ;\\] R A-38
2¢,
Substituting equations (A-37, A-28) into equation (A-35) and using the con-
dition for a clamped diaphragm that T = %.H = 0 when r = a to evaluate
r

the constants A and B, Mason (Reference <7 ) obtained the following

expression for displacement of the diaphragm:

_ P KzI. (X, )T (Rer) 4 KT (K T (x3T) A-39
‘1 Towt, o (KoK, T, (K0) KT (K)o (K, 0)




where _
. ’
K= - A K.
Now theoretically at a undamped natural frequency oy, the center deflection
of the diaphragm becomes infinite. Applying this theoretical condition to

equation (\-37), it is seen that for the equation to be satisfied, the follow-

ing condition must hold
30 (K\O\\KZIl (Kio\) + KgS\(K\&XIQ(‘\:\ZC\\ = O A_4°
If x = K;a and z = Kyoo the frequency equation (A-40) takes the form

Io(z) - ’39(7\)
2T, (&) XJ, (X)
To find values of x and z to satisfy equation (A-41), a plot is made of
_ 9o ()

* 310%)
I, (z)

two plots of m vs Z. One plot corresponds to x = z and the other
1

A- 4l

vs x as shown in Figure 27 . Also plotted in this figure are

to x = 0.1z. The intersection of the curves gives values of x and z which

satisfy equation (A-4!) for the particular cases where _’ZE = 1 and —Z}S = 0.1.

Thus, from a cross plot of Jo (x) and Lo (z) values of x
? x Jp (x) z 17 (z)

and z satisfying equation (A-41) can be found for various ratios of x to z.

The ratio st in expanded form is

= Ry Jasdeut -y,
W) [ JaErdeer + 9,

Now the general case under study is of a diaphragm whose characteristic

is between a theoretical membrane at one extreme and a thin plate as the
other extrene. This thus sets limits on the values of -}ZE which are

necessary to consider. For a menbrane (no bending stiffness) ¢, = 0 and
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one limit is X = O while for a thin plate (no tension) 4 = O and = = 1.
Z

Hence, it can be seen from Figure 27 that, at the fundamental natural

frequency, x is limited in value to the range from x = 2.105 (% = 0 and

z =®) tox =2 =3.196. Table Z . gives values of x and z from expanded

_Jo (x) Io (=) + X
plots of ) vs X and E—ET—?E) vs 2 for various values of 7 in
X dJq (x 1

this range.

In order to graphically find the fundamental natural frequency,
another plot is required. From previously defined expressions for x and z

the following equations are obtained

2 2
K% = % /d\+4mi§, "Al

2¢, "
and
2&2‘ i
2 2 o ~-47%
Z =% = =, *
X2" = LWw
C,
hence
2
X722 = O Wne

| ~44
NG, A

Swbstituting the previously defined values of c, and d, into equations (A42)

and (a44) yields

ZZ—~XZ _ o*T 126(1-5) ' A-45

™M (E_fT\ ha

A-46




Table T

A-1k

also contains tabulated values of expressions (A-45 ) and (n-46)

for various values of x and z within our range of interest. Figure 2§

shows a plot of equation (A-45) plotted against equation (A-4¢) for their

respective values given in Table A-1. Hence, the plot shown in Figure a5

is a graphical solution of equation (A-34) for the fundamental natural

frequency of any circular, ciamped, flat diaphragm under radial tension.

Summa.ry:

Steps to follow in using the graphical method (Reference ).

1)

2)

3)

k)

2
Calculate & T 120(1'02) (equation A-45)
m (B4T) B

from the initial tension and the diaphragm constants.

With the value calculated in step (1), obtain the value of

262 wpy  |3p(1-07)
h \| (B+T)

solution plotted in Figure 28

(equation A-46) from the graphical

2 5
Caleulate 22 3p(1-07)

h E+4T
Divide the value obtained in step (2) by the value obtained
in step_(3) to obtain the fundamental natural frequency of

the diaphragm.




A-15

A6. Static Deflection of a Diaphragn

Equation (-47) gives an expression'for the displacement, T,
of a diaphragm with tension and stiffness. If 1 is treated as a small
quantity, as originally assumed, then the expression for the displace-

ment as given in Reference (7 ), is reduced to
. r H . -

-
o /(Eﬂ’)k3 T r m‘(n—w’))
J 127 (1-52) J (E*TYR?

- (Q 27T (1-57) ) r
J

E+T) W

)

il
_{

+
Pr
5.
1
e

127 (1-5%)
I'<Q (E+T) W2

In the case of a thin plate T - 0 and the static deflection becomes

. & 4 2,2
q____ 12 (\—E)[ Pl Qr‘l . 45

Enw o4 32
In the case of a theoretical membrane, h — O or the natural stiffness is

quite small compared to the tension; the amplitude of vibration is

‘,‘ - -—_“-_?_-A[O\a;rz } A-43

This equation may be written as

1] | h-se

Note that the center deflection at r = O is expressed as

- _ o'P
q\"=o_— qo . _Z-T:- A ) A- St
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Therefore, equation (-59) can be written in final form as

0= n - (5]

A plot of this relationship is shown in Figure 2.9.

52

>
'
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APPENDIX B

ACOUSTICAL SYSTEM

Helmholtz Resonator

In acoustics, the term resonator has come to mean a simple
vibrating system consisting of a compressible fluid contained in a
rigid enclosure commnicating with the external medium through an

aperture of restricted area.

fhe theory of resonators has been developed in detail by Helmwholtz,
for whom they are named after, but only a simplified treatment will be
presented here. Figure 2 &shows two simple Helmholtz resonators. The
exact form of the resonator is unimportant as long as the smallest dimen-
sion is considerably larger than the dimension of the aperture. A simple
resonator, as described sbove, 1is analogous to that of a mechanical system
with one degree of freedom having lumped mechanical elements of mass,
stiffness and resistance. (It is also analogous to'a series RCL circuit.)
This analogy provides the simpleét physical interpretation of the system.
In Helmholtz's as well as Rayleigh's (Reference & ) development of the
theory of such a resonator, the gas in the aperture is considered to move
as a unit and provides the mass element of the system. The motion of the
gas in the aperture acts like a reciprocating piston compressing and
rarifying the air contained in the cavity. The influx and efflux of gas
through the aperture provides the stiffness element (i;e., the stiffness
is due to the volumetric compression, s, = - dv , Within the cavity).
The resistance element is provided by the radiation of energy into the

surrounding medium (dependent upon the cross sectional area of aperture)

and by the dissipation of energy due to viscous damping (dependent on

the length of the aperture, i.e., effects of tubing).



Before proceeding further with the analysis of the acoustic

system, the following assumptions must be stated:

Assumptions
i) The wave length, A, of the vibration of free air is large
compared with the dimension of the cavity. This implies
that at any instant, the condensation will be uniform

throughout the cavity.

ii) Adiabatic compression

iii) Uniform volume flow

iv) The tube length (aperture) must be sufficiently short so

that the dead time /¢ can be neglected.

As previously stated, the resistance element is a function of
the dimension of the aperture and on this basis, the analysis will be

carried out in two parts.

I. The first case to be considered is that in which the length
of the aperture is negligible compared to its diameter. This case is
shown in Figure 2. 5a.. The motion in the system is mainly confined to
the air in the aperfure (or neck). If the cross-sectional area and
length of the aperture are S and £ respectively, and p in the density
(mass/vol) of the gas in the neck, then the mass of air in the neck is
p £ S. A force balance carried out on the air in the aperture shows
thaf the acceleration force is given as fa = (p £ S)ﬁ, where T is the
displacement of the unit air mass. The stiffness force or excess pressure

that results when a volume of gas, AV = ST, flows through the aperture °
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is developed as follows:
The bulk modulus of elasticity, B, of a fluid is defined
as the negative of the ratio of the incremental pressure

dP to the strain dv/v.

AP
B,= -
Yo
or
B=- 8P
\ ' S.

where s, is the condensation equal to - dV/VO. Now the general
definition of incremental pressure dP is identical with the
acoustic definition of excess pressure, p. Hence

P:é?

letting

substituting for s
P = -/oC_zAV

and

2
:-—CRS
P v >0\
Therefore, the resulting stiffness force acting on the mass

is given by

§= pS = -Sf ¢y -

The resistive force for this case is due only to the radiation

of energy and is given by Rayleigh (Reference § ) as

2 LS ‘Y
%P\ = pc qu “ Where K+’—' 2T _ B'Z’
2T LS
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Summing forces the complete equation of motion is obtained

%a*‘ga +%s='§'d

i 2.7, 2 o2 ’ ywt
or “ pe KiS pc S - B-3%
09\3\'\*____._2_;;___(\ +.._\T._\’}._59€-

where § P eVt is an externally applied force and P is its pressure
amplitude. Thus, it is seen that this acoustical system can be described

by a second order linear differential equation with an undamped natural

“(or fundamental) frequency of

Wae = C _§_ B-4
] IV,

and a damping ratio (due to radiation) equal to

= CKQ“ ,§__. - Kf SVO B" 5

41 W X SAUR BN

R

Now in an actual resonator this damping term is very small and has little
effect on the vibration of the system. Thus, it can be assumed that the

damped and undamped natural frequencies are approximately the same.

IT. In the second case to be considered, the length of the
aperture is comparable or larger than its diameter. This case takes into
account the effects of a longvlength of tubing connected to the resonator,
thus extending the length of the aperture. A simple resonator of this
type is shown in Fiéure (2.85b). The analysis in this case will treat
the system as a pneumatic system. Thus, it will be necessary to define
a new set of terms. The objective of the treatment of this case is to

arrive at a transfer function (P./Py) for the system.

Resistance - R: The resistance in the system for this present
case I1s assumed to be due only to the resistance offered to the motion

of the viscous fluid in the tubing. The pressure drop, P,., in the tube
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due to flow resistance is given by the Hagen-Poiseuille lIaw as:

: 'Q - v \'34 PI‘ "-:_ radios oS ‘\"-’\O\NS
Bu i

where the pneumatic resistance coefficient is defined as

8ul B-6
R = -“-rl4 '
hence .
Pe = RC.Q -7

The value of R varies with @bsolute viscosity which is assumed
to be essentially constant for small temperature and pressure

change. The relationship only holds for laminar flow.

Capacitance - G: Pneumatic capacitance is defined as the time
integral of the volumetric flow into a vessel divided by its internal
pressure, Starting from a special form of the general gas equation
(equation 2= &), a value for the capacitance of the system presently

under study can be formulated as follows:

Vv B-B
4P,

Now the volume flow into the cavity or reservoir is equal to

C = -~

the decrease in volume of the gas originally in the cavity;

hence,
dQ = -4V

therefore

C= 35

Assuming adiabatic compression in the cavity

Y : _
Pz V = Ke wHere © Y = vano S cpenfic
heals
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differentiating

VAR B YV 4V o

dv - -V
4 € B Y

Substituting this relationship into equation (B‘é ) a value

for capacity is obtained

v
C = B-10
X
and hence equation (®-9 ) becomes
‘ B- I
AQ = C = vV
dP, P, X

Inertance - J: If the motion of the fluid is assumed to be
confined to the tubing then the accelerating force on the mass element,
p S 2, in the tubing is given as
SPJ‘ = (DSX)Q
where PJ is the pressure drop necessary to accelerate the fluid

and may be written as

P = o2 &-i2

Now "a", the acceleration of the fluid in the tube, can be

expressed pneumatically as

Q@
a5
hence )
N 0%
PB‘ = —-g-* Q B-13

or

PS. = 3@ 5-1‘4
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where the inertance (J) of the system is defined from equation

(8-14) as
- oo B-15

IS
This term is proportional to the density of the fluid and for

small pressure changes, it is essentially constant.

Thus, having defined the terms necessary to work with, an equation

of motion can be obtained for the system by making a pressure balance on

the mass element of air in the tubing as follows:

and

Py * P +P, =P, =P -F

letting Py (disturbing pressure at mouth of tubing) = P, - P,

P, (pressure change in reservoir) = P, - Po;
hence,

P‘J’ o+ PV’ + P‘ = Pd B-17

Now by definition

P = RQ

and
Po- 3G
substituting into equation (B-17)

:S-é * P\.Q + PC ’-‘Pa ®-18

Now from equation (®-9)

4@
d Fg = TET



taking the integral of both sides

Sar.

i

< (dQ
.or
- 19
- 9__ + Qeng‘rku‘\ B-!
: Pe = c .
The constant term can be evaluated from the condition that when Q = O,

= . c
P2 PO Hence,
- Q B-20
Pz - Po = .E = PQ
Therefore, the equation of motion in final form'becomes
. . - ‘ 6-2_'
jQ * R Q + % - \d
or substituting equation (3-20) into equation (8-21)
JC P + RaP + P = B B-22

This again is a second order differential equation which may be written

in the more familiar form

e - _ A ®»-23%
\z E; 4 21;31L > + P = ‘: o _
w\g wnk

The undamped natural frequency 1is

Whae = !3C , ' B-24

which is the same as in the previous case., The damping ratio for this case,

due to viscous damping is
§ _ _&E_g___ - Sul | wrrv N B-25
R 2N T 2we | PANXR o

Finally, by Laplace transformation of equation (B-23), the transfer function

for a Helmholtz resonator in which the length of the aperture is larger

than its diameter is given as

R '

R =

B-26
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APPENDIX C
ANATYSTS OF BRIDGE NETWORK
In Figure B3 is shown the general circuitry of a bridge

network. For this bridge to be balanced, i.e., no output voltage, the

following relationship must be true

I,2,-I,%. c-!

I,%z2s=T,2, c-2
hence

Z:Zs =2, 24 c-3

In the particular case under study, the bridge has two active elements,
Zy and z), - These elements producé a differential dutput such that a

+Az in one element produces a -4z in the other and thus the net result
is |26z, A transfer function for this network will now be formulated in

general terms under the assumption that Ri:: Oand O < R, <« =.

Using Kirchoff's Current law

T currents at Node #2

_YL + (Vz'\/;\ 4 (VZ"'V'\ - O

Z, Ro Z4
or
LN A .
‘similarly

Z currents at Node #3

Ve 1 \ i Ve
—XL x4 2 = Y, = 2R -3
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Now solving equation (¢-4 ) and (¢-5) simultaneously for v,

and V
3
Ne -4
24 RL
Ve \ 1 \
NYE ] = ¢ o o4
23 [?' 23 RL]
L FURE S I -
zz 24' RL RL
- LI O )
RL Zl 23 R\-
or
1 ! ) A
+ + -
. V‘._ — \/E 2124 2124 Z4RL *23 RL. Q-Q,
' det '
where
| \ | \ \ \ \ | \
= == + e T ol i S T N -
def = 5, zEL LR TR T ER LR TR T87, 5%, X
and

S IO SR TN WA N .,__L‘_L R W +_\._]
det [z,z,_*'zzz: 2324 242,] Rl 2, 2. #3 Z4

and .
LA U I Ve
\zz * Re * Z;X Zq
_ Ve
RL Z'B
\/ —
3
| def
or

\ \ o \ "
V = V [ 2223+ ZZRL +23§4+ Za Ry
= € A
’ det
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Now from the bridge configuration

\/o = \/3."\/2 C-9
therefore
,._l_-_‘_,_.‘_,_ +__L_ +_L—_.L. —_l_- _.| __.J._.._
\/ = VE Z 24 ZaZ4a Z4R. Z3Re ZaZy Z3Re Z3Za Z4R, C~-10
det
Now
Z o = z. = Z.'s
EA
VQ — 24 ZZ

and
.\_/_°. — RL(ZZ —2.4_) C-il
VE ZRL(Z‘—Z.*'?—:\)"'Z%?_Z‘;*ZoZZ*ZeZ4
Now assuming a differential variation in z, and z),
Z,=Z, * A2, =2 +AZ"
24 = 24— A‘Z'q, = £**AZ*
where

Substituting this relationship into eguation (¢-i1') and

rearranging terms

Vs AZE®
2 = - C-i12
Ve  22% ¢ 2Zo . 2%Z* _ AR AR
Re R Re
Now N\
(AZ) ~ 0

Ro
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therefore '
AZE
\o _ Z" C-13
V 2+ RLK_Z°+Z ]

This is thus the general transfer function for a Wheatstone bridge with
two differential active arms. Now in particular, the elements of the
bridge being used are capacitors as shown in Figure 4~ . The transfer

function for this particular bridge is obtained as follows

Letting
= |1 whege (o =C, =C; c-14
| 2. \Q’Col ' *
and
i X i
\z \ - l CJQ‘\ WHERE CX:QZ =C'5 c-I5
differentiating
% ¥
dz* = - 4¢
w{c*)
or
*
A?'—* = "AQ"
w(c¥)?
substituting this result into equation (c-13)
ne™
Vo _ c
— = . C-16
4 L :
Ve z R._(wc* +wC¢\)
and .
ACo
No o L e W HERE Co=C". c-17
Ve 2 [V =] -
£ [\ QR Co W= QL = CONSTRRT
the sensitivity,S, is defined as
e
A/ { I
S = —F = ——2—‘ "_‘—'—l N “." Q-lB

>
&

|

QR Qo

&
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Now, equation (o-i) of Appendix-D expresses to a first order
in Ado/d” the éhange in capacitance of one side of the symmetrical

capacitive transducer to a differential change in the electrode spacing

ANC, = —‘—2 \<Co % WHERE Ade = N, |
WHERE.
' 2
BT -1
or

Thus, equation {-15) can be expressed as

KAdo c-19
24. _Q.‘RLQ.-

s" domain, equations {-4), and (¢-15) can be written in Iaplace

Now, in the

form as
\
e = 5Co C-2o
X _ {
Z T C~ c-21

Thus, equation (-'¢) can be written in Laplace form as

Lxcfé
.‘\/c ) _ SC¥

NG 2 rx e %)

and

C-22

Now, as before
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therefore

S + -2

Vo(s) _ v AC)..S
Ve(c:') 2 <. E:E.

Substituting equation (p-u) into equation (-23), the bridge transfer

function is written as

Vo(s) . K w(o)| .8
Moy 4 4o

or in Bode form

.§—+\
(e

Ad. (5) 4do o€

Vo(s) - Vs) _5__1”__3 l WHERE o

Now, in particular

Ve = Vosin ot
or in Iaplace form

\/E_O._

Vel = Ne e

Substituting this relationship into equation ¢-24), the transfer function

can be written as

Vo(s) - KW [_s } <L }
Ad, (s 43, S+ ST+ 27

¢-26

The response of this expression to a unit impulse is expressed in the

time domain as

-t

Vo(t) = AL VK O | 2% e [ £2 SIN (Nt + W)

4do e O L[ ot e

where

Vo= TaN"

=
L.
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By exciting the bridge with a high frequency A.C. source, it can be
assumed that {l. >> L . Based on this assumption, equation (-27)

reduces to

\Io({-) = A&:\/:K' SIN (Ot + V) Qc-28

[

which, when réctified, becomes D.C. value

Vo(4) = Bde VX | . Q-29
d. 4
OR In LAPLACE Form _
VoY _ KN : . @a-30

Ad.(sY T 4d.
Thus, by assuming 3 >>& , the output voltage is insensitive to small

changes in the bridge frequency and the circuit resistance.



APPENDIX D

THEORETICAL ANALYSIS OF A VARIABLE CAPACITOR
RETATING THE VARIATION IN CAPACITOR PLATE
SPACING TO THE RESULTANT CHANGE TN CAPACTTANCE Odg

Ac,

Pigure 3 C is a cross sectional diagram of a diaphragm type
(variable) capacitor. The capacitor consists of a deflectable diaphragm
and a fixed electrode. The diaphragm is a metallic menbrane of thickness
h and is circularly clamped along its periphery. Its radius, measured
from the inside edge of the clamp, is "a". The electrode is a circular
metallic structure of radius R'. The diaphragm and the electrode have
& common axis passing through their centers normal to their parallel

surfaces and are separated by an air gap of thickness d..

When the diaphragm is at ground potential and the electrode is
excited by an A.C. source, a capacitor is formed. The capacitance of a
parallel plate capacitor is defined by the dimension of the gap between the

parallel plate and by the medium In the gap. This is expressed as
C= -—__ks«*’\ (MK ) D

where A is the cross sectional area of the gap.
d is the plafe separator.
€, 1s the permittivity constant separating the plate.
k is the diele;tfic constant.

Now, in particular, the capacitance of the diaphragm type capacitor when

the diaphragm is in its equilibrium position is expressed as

C = ksqgﬂ"é“) D-2
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When the diaphragm is acted upon by a disturbing force, its
displacement from its equilibrium position, as derived in Appendix A

is given by equation (A-52)

2
= ~-{r
=l )]
where T, is the center deflection. Figure 297 gives a graphical solution

of this equation for O < r < a.

Since the capacitance of a parallel plate capacitor is inversely
proportional to the distance between the plate, the deflection,T|, of the
diaphragm from its equilibrium poéition results in a differential change

in capacitance Ac.

An expression relating the diaphragm deflection to the resultant

capacitance change has been derived by Lilly which will now be presented.

Derivation:

1) Consider the electrode surface as consisting of concentric
rings of infinitesimally width. Iet identical rings exist directly across
the air gap on the diaphragm surface. Each ring has a width dr and a
radius r measured ffom the center axis as shown in Figure 30 . Each
pair of identical rings (one on electrode and one on the diaphragm)
represents an elemental parallel annulus capacitor separated by a distance
d. When the diaphragm is deflected a distance T, the capacitance of
each elemental capacitor is directly proportional to its annulus surface
area, 2nrdr, and inversely proportional to the distance between the rings
d. + ﬂ; This is expressed as

ke, 2wr dr
CR)



where the distance is do - T if the diaphragm is deflected towards the

fixed electrode and d,+ T when deflected away from it.

The total capacitance of the diaphragm type capacitor, when
the diaphragm is deflected, is equal to the summation of capacitance

of each annular ring capacitor

+

R .
ke 2w rdr £R - .
C= rZS (;.f-"ﬂr WHERE Q= qUr) D-4

or by integrating from r = 0 to r = R', an expression for the capacitance

is obtained

R
C = g ke.2wr de b-5
o (dray

2) 1In particular, it is necessary to find the change in
capacitance, AC, resulting from a diaphragm deflection. This is obtained

by subtracting equation (P-3) from equation (0-5) as follows

ACO"_‘ CQ—Q OR QQiACOT‘Q

or, econsidering only the absolute value of each term

2 R
AC + ke, wR - ke.2mr dr D-o
° a° @ (A-oi ‘q}
multiplied by d.
ke w R'z
d. AQO +\ - ds - Rkéozwr dr
keowr® kemR® ) (drm)

multiplied by N2
)
a

i R
e AcL (EY= do g ke.Zmr Ay D -7

ke;\’r S\
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T
Rearranging and letting N = {%—]2 and

. P\2
=-S5 o _at  (RY | ac g
' ‘é_i_.o._“’_‘*_) K€, wR'? o - <.
de ( 3 ) °
Equation (P-7) can be written as
Ac A} K
S“-’-'- 2N = —SL ke, 2T dr - N b-8
Ce kQ{WO\ (d‘f_‘)\

This expression is identical to that derived by Lilly except that equation

(p-8) is in the rationalized MKS system while Lilly's derivation is in

the cgs system. The two systems differ only by a factor h:-rk .
€

Integrating equation (D-8), Lilly obtained the following

relationship for two cases

l(—lz—)(l-—Hl)w +-’,3(|-H3)w‘+ 1 - O-9

Approach (d,- 1): S,

Recession (4 + n): 8, = [.%(\_Hz)w +_j3_ (I—H‘)Wz - ] 5-10
where

M= (1-N) = [» —(%L\”]
and

wz[ﬂi}=£1 o = Ade
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3) 1In conclusion, to a first order approximation in W= .AdO
d.
the differential change in capacitance is expressed as
BCo o+ W =+ K Al D1t
C. 2 2 4.
where Kl is a function of gauge geometry
K==0- HZ} 12
N { e-

ov

K' = 2_ - BQ—'-\Z | ©-i12a
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TABLE 2.
TABULATED VALUES OF THE GRAPHICAL SOIUTION FOR THE FUNDAMENTAL
UNDAMPED NATURAL FREQUENCY OF ANY CIRCULAR, CLAMPED,

FLAT DIAPHRAGM UNDER RADIAL TENSION

XZ, 22 - X2,
x/z x z 2a2u, 3p(1 - &) | 2ET (1 - @)
h{E+T My (E+T)
1.0 3.1962 3.1962 10.22 0
«95 3.170 3.337 ' 10.58 1.086
.9 3.143 3.h92 10.98 2.317
.85 3.114 3.664 11.41 3.725
.8 3.083 3.854 . 11.88 5.347
.75 3.051 4,068 12.41 7.240
I 3.0L L .311 13.01 9.480
.65 2.983 4 .589 : 13.69 12.16
.6 2.947 4 .912 14 .48 15 .4k
.55 2.909 5.281 15.36 19.43
.5 2.869 5.738 16.46 2k .69
45 2.828 6 .28k 17.77 31.50
R 2.786 6.965 19.40 40.75
.35 - 2.742 7.834 21.48 53.86
3 2.696 8.987 24 .23 73 .49
.25 2.649 10.60 28.07 105.3
.2 2.602 13.01 33.85 162.5
.15 2.553 17.02 43 .45 283.2
Jd 2.505 25 .05 62.75 621.2
075 2.480 33.07 82.01 1087.3
.05 2.455 49.10 120.5 2405
.25 2.430 97.20 236.2 oLL2
0 2.4048 o @ o

a'Pla’ce without tension

b Infinitely thin ‘membrane
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