816 research outputs found

    Rapid prototyped porous nickel-titanium scaffolds as bone substitutes

    Get PDF
    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium

    Hadronization of massive quark matter

    Get PDF
    We present a fast hadronization model for the constituent quark plasma (CQP) produced in relativistic heavy ion collisions at SPS. The model is based on rate equations and on an equation of state inspired by the string phenomenology. This equation of state has a confining character. We display the time evolution of the relevant physical quantities during the hadronization process and the final hadron multiplicities. The results indicate that the hadronization of CQP is fast.Comment: 12 pages, Latex, 2 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America

    Get PDF
    Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old-growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre-existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (\u3e170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR

    Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures

    Get PDF
    Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wavepackets with attosecond duration and strong directivity. The possibility to steer, control or switch such electron wavepackets by light is expected to pave the way towards direct visualization of nanoplasmonic field dynamics and real-time probing of electron motion in solid state nanostructures. Such pulses can be generated by strong-field induced tunneling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field emitted electrons from such tips. This is a step forward towards controlling the coherent electron motion in and around metallic nanostructures on ultrashort length and time scales

    Anomalous finite-size effect in superconducting Josephson junction arrays

    Full text link
    We report large-scale simulations of the resistively-shunted Josephson junction array in strip geometry. As the strip width increases, the voltage first decreases following the dynamic scaling ansatz proposed by Minnhagen {\it et al.} [Phys. Rev. Lett. {\bf 74}, 3672 (1995)], and then rises towards the asymptotic value predicted by Ambegaokar {\it et al.} [Phys. Rev. Lett. {\bf 40}, 783 (1978)]. The nonmonotonic size-dependence is attributed to shortened life time of free vortices in narrow strips, and points to the danger of single-scale analysis applied to a charge-neutral superfluid state.Comment: 4 pages, 2 figure

    Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Get PDF
    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms, and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100-ft level as a world-class low seismic-noise environment.Comment: 29 pages, 16 figure

    Semi-Inclusive Lambda and Kshort Production in p-Au Collisions at 17.5 GeV/c

    Full text link
    The first detailed measurements of the centrality dependence of strangeness production in p-A collisions are presented. Lambda and Kshort dn/dy distributions from 17.5 GeV/c p-Au collisions are shown as a function of "grey" track multiplicity and the estimated number of collisions, nu, made by the proton. The nu dependence of the Lambda yield deviates from a scaling of p-p data by the number of participants, increasing faster than this scaling for nu<=5 and saturating for larger nu. A slower growth in Kshort multiplicity with nu is observed, consistent with a weaker nu dependence of K-Kbar production than Y-K production.Comment: 5 pages, 3 figures, formatted with RevTex, current version has enlarged figure catpion

    Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon

    Get PDF
    Net proton and negative hadron spectra for central \PbPb collisions at 158 GeV per nucleon at the CERN SPS were measured and compared to spectra from lighter systems. Net baryon distributions were derived from those of net protons, utilizing model calculations of isospin contributions as well as data and model calculations of strange baryon distributions. Stopping (rapidity shift with respect to the beam) and mean transverse momentum \meanpt of net baryons increase with system size. The rapidity density of negative hadrons scales with the number of participant nucleons for nuclear collisions, whereas their \meanpt is independent of system size. The \meanpt dependence upon particle mass and system size is consistent with larger transverse flow velocity at midrapidity for \PbPb compared to \SS central collisions.Comment: This version accepted for publication in PRL. 4 pages, 3 figures. Typos corrected, some paragraphs expanded in response to referee comments, to better explain details of analysi
    corecore