9 research outputs found

    Establishing an invertebrate Galleria mellonella greater wax moth larval model of Neisseria gonorrhoeae infection

    No full text
    Neisseria gonorrhoeae (gonococcus) causes the human sexually transmitted disease gonorrhea. Studying gonococcal pathogenesis and developing new vaccines and therapies to combat the increasing prevalence of multi-antibiotic resistant bacteria has made use of many ex vivo models based on human cells and tissues, and in vivo vertebrate models, for example, rodent, pig and human. The focus of the current study was to examine the utility of the invertebrate greater wax moth Galleria mellonella as an in vivo model of gonococcal infection. We observed that a threshold of ~106–107 gonococci/larva was required to kill &gt;50% of larvae (P &lt; 0.05), and increased toxicity correlated with reduced health index scores and pronounced histopathological changes such as increases in the total lesion grade, melanized nodules, hemocyte reaction, and multifocal adipose body degeneration. Larval death was independent of the expression of pilus or Opa protein or LOS sialylation within a single gonococcal species studied, but the model could demonstrate relative toxicity of different isolates. N. meningitidis, N. lacatamica and gonococci all killed larvae equally, but were significantly less toxic (P &gt; 0.05) than Pseudomonas aeruginosa. Larvae primed with nontoxic doses of gonococci were more susceptible to subsequent challenge with homologous and heterologous bacteria, and larval survival was significantly reduced (P &lt; 0.05) in infected larvae after depletion of their hemocytes with clodronate-liposomes. The model was used to test the anti-gonococcal properties of antibiotics and novel antimicrobials. Ceftriaxone (P &lt; 0.05) protected larvae from infection with different gonococcal isolates, but not azithromycin or monocaprin or ligand-coated silver nanoclusters (P &gt; 0.05).</p

    Dataset for: Establishing an invertebrate Galleria mellonella Greater wax moth larval model of Neisseria gonorrhoeae infection

    No full text
    This dataset supports the publication: Aiste Dijokaite, Maria Victoria Humbert, Emma Borkowski, Roberto M La Ragione, Myron Christodoulides (2021) &#39;Establishing an invertebrate Galleria mellonella Greater wax moth larval model of Neisseria gonorrhoeae infection&#39; published in Virulence, DOI: 10.1080/21505594.2021.1950269</span

    Comparative analysis of obesity-related cardiometabolic and renal biomarkers in human plasma and serum

    Get PDF
    The search for biomarkers associated with obesity-related diseases is ongoing, but it is not clear whether plasma and serum can be used interchangeably in this process. Here we used high-throughput screening to analyze 358 proteins and 76 lipids, selected because of their relevance to obesity-associated diseases, in plasma and serum from age- and sex-matched lean and obese humans. Most of the proteins/lipids had similar concentrations in plasma and serum, but a subset showed significant differences. Notably, a key marker of cardiovascular disease PAI-1 showed a difference in concentration between the obese and lean groups only in plasma. Furthermore, some biomarkers showed poor correlations between plasma and serum, including PCSK9, an important regulator of cholesterol homeostasis. Collectively, our results show that the choice of biofluid may impact study outcome when screening for obesity-related biomarkers and we identify several markers where this will be the case

    Lipoxins reduce obesity-induced adipose tissue inflammation in 3D-cultured human adipocytes and explant cultures.

    No full text
    Adipose tissue inflammation drives obesity-related cardiometabolic diseases. Enhancing endogenous resolution mechanisms through administration of lipoxin A4, a specialized pro-resolving lipid mediator, was shown to reduce adipose inflammation and subsequently protects against obesity-induced systemic disease in mice. Here, we demonstrate that lipoxins reduce inflammation in 3D-cultured human adipocytes and adipose tissue explants from obese patients. Approximately 50% of patients responded particularly well to lipoxins by reducing inflammatory cytokines and promoting an anti-inflammatory M2 macrophage phenotype. Responding patients were characterized by elevated systemic levels of C-reactive protein, which causes inflammation in cultured human adipocytes. Responders appeared more prone to producing anti-inflammatory oxylipins and displayed elevated prostaglandin D2 levels, which has been interlinked with transcription of lipoxin-generating enzymes. Using explant cultures, this study provides the first proof-of-concept evidence supporting the therapeutic potential of lipoxins in reducing human adipose tissue inflammation. Our data further indicate that lipoxin treatment may require a tailored personalized-medicine approach

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore