35 research outputs found

    Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2

    Get PDF
    Objective: To delineate the natural history, diagnosis, and treatment response of Parkinson disease (PD) in individuals with 22q11.2 deletion syndrome (22q11.2DS), and to determine if these patients differ from those with idiopathic PD. Methods: In this international observational study, we characterized the clinical and neuroimaging features of 45 individuals with 22q11.2DS and PD (mean follow-up 7.5 ± 4.1 years). Results: 22q11.2DS PD had a typical male excess (32 male, 71.1%), presentation and progression of hallmark motor symptoms, reduced striatal dopamine transporter binding with molecular imaging, and initial positive response to levodopa (93.3%). Mean age at motor symptom onset was relatively young (39.5 ± 8.5 years); 71.4% of cases had early-onset PD (<45 years). Despite having a similar age at onset, the diagnosis of PD was delayed in patients with a history of antipsychotic treatment compared with antipsychotic-naive patients (median 5 vs 1 year, p = 0.001). Preexisting psychotic disorders (24.5%) and mood or anxiety disorders (31.1%) were common, as were early dystonia (19.4%) and a history of seizures (33.3%). Conclusions: Major clinical characteristics and response to standard treatments appear comparable in 22q11.2DS-associated PD to those in idiopathic PD, although the average age at onset is earlier. Importantly, treatment of preexisting psychotic illness may delay diagnosis of PD in 22q11.DS patients. An index of suspicion and vigilance for complex comorbidity may assist in identifying patients to prioritize for genetic testing

    Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP

    Get PDF
    Background In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. Methods We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. Results We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. Conclusions This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype.This work was supported by grants from the European Research Area Networks Network of European Funding for Neuroscience Research through the Research Foundation–Flanders and the Chief Scientist Office–Ministry of Health (to RFK, GV, IG). This research was supported, in part, by grants from the Simons Foundation Autism Research Initiative (Grant No. SFARI 303241 to EEE) and National Institutes of Health (Grant No. R01MH101221 to EEE). This work was also supported by the Italian Ministry of Health and ‘5 per mille’ funding (to CR). For many individuals, sequencing was provided by research initiatives like the Care4Rare Research Consortium in Canada or the Deciphering Developmental Disorders (DDD) study in the UK. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (Grant No. HICF-1009–003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (Grant No. WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of the Wellcome Trust or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South Research Ethics Committee, and GEN/284/12 granted by the Republic of Ireland Research Ethics Committee). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network

    Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

    Full text link
    IMPORTANCE The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P 100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Get PDF
    Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions

    Heat-induced gelation of micellar casein/plant protein oil-in-water emulsions

    No full text
    International audienceThe heat-induced gelation of oil-in-water emulsions stabilised by mixtures of micellar caseins (MC) and plant proteins (PLP) was investigated in order to assess the potential of PLP to replace milk proteins for the development of novel food products. The aim of this work was to investigate how the heat-induced gelation of MC/PLP oil-in-water emulsions is affected by sunflower oil content (0, 5, 10 and 15% w/w) and total protein content in the aqueous phase (C; from 1 to 4% w/w) at different protein compositions (MC/PLP = 100/0 to 0/100) and pH 5.8. Two types of PLP were used: soy proteins (SP) and pea proteins (PP). Storage moduli (G') were measured during heating ramps from 20 to 90 °C and heat-induced gelation was characterised by an increase in G' at a gelation temperature (Tg). The gel stiffness (Gel) was determined after 1 h at 90 °C and the microstructure of the emulsion gels was observed by confocal laser scanning microscopy (CLSM). Tg increased when an increasing fraction of MC was replaced by SP or PP, due to binding of calcium to PLP. Tg decreased with increasing oil content in the MC/PLP emulsions mainly up to 10% w/w oil, explained by protein interactions at the oil-water interface. Generally, MC could be successfully replaced by PLP while maintaining the same Gel. Gel increased with increasing oil content, suggesting that oil droplets acted as active fillers in the emulsion gels, which was confirmed by CLSM images. Gel slightly increased with increasing C from 1 to 4% w/w. It was also shown that PLP can be used instead of whey proteins in MC/whey protein oil-in-water emulsions while maintaining the same Gel

    Relaxation of the non-photochemical chlorophyll fluorescence quenching in diatoms: kinetics, components and mechanisms

    No full text
    International audienceDiatoms are especially important microorganisms because they constitute the larger group of microalgae. To survive the constant variations of the light environment, diatoms have developed mechanisms aiming at the dissipation of excess energy, such as the xanthophyll cycle and the non-photochemical chlorophyll (Chl) fluorescence quenching. This contribution is dedicated to the relaxation of the latter process when the adverse conditions cease. An original nonlinear regression analysis of the relaxation of non-photochemical Chl fluorescence quenching, qN, in diatoms is presented. It was used to obtain experimental evidence for the existence of three time-resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among the three components. The application of metabolic inhibitors (dithiothreitol, ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed the identification of the mechanisms on which each component mostly relies. qNi is linked to the relaxation of the ΔpH gradient and the reversal of the xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by the high light exposure, qNf seems to reflect fast conformational changes within thylakoid membranes in the vicinity of the photosystem II complexes

    Cell size-based, passive selection of the blue diatom Haslea ostrearia by the oyster Crassostrea gigas

    No full text
    International audiencePre-ingestive selection has been identified as a feeding mechanism of oysters that may influence their uptake of particles and microalgal cells. Oysters can feed specifically on the pennate diatom Haslea ostrearia, which produces the blue pigment marennine that is responsible for the greening of oysters. Because the size of particles or cells plays a significant role in the selection process, and given that diatoms experience a decrease in size as a consequence of vegetative reproduction, H. ostrearia consumption and marennine uptake might be influenced by pre-ingestive selection. We examined the role of H. ostrearia cell size in the selective feeding of Crassostrea gigas. Individual flow-through chambers were used to deliver mixtures of H. ostrearia of varying cell length to oysters. Inflow, outflow and pseudofaecal samples were collected from chambers during oyster feeding. Video-endoscopy was used to sample material in the dorsal and ventral particle tracts. Diatom cells counts showed that pseudofaeces contained on average larger cells than the ambient medium. However, proportions of the different populations of H. ostrearia in pseudofaeces were identical to those in the ventral tracts, indicating that no selection was performed by the labial palps. Video-endoscopy, plus imaging by scanning electron microscopy, of gills and labial palps revealed that only those larger H. ostrearia that were orientated dorsoventrally could enter the principal filaments (pfs) and then access the dorsal acceptance tract. These results show that for particles like Haslea cells with only one axis exceeding the width of the pfs, the selection on the oyster gills is passive and based on cell size
    corecore