254 research outputs found

    SURFACE INDUCED FINITE-SIZE EFFECTS FOR FIRST ORDER PHASE TRANSITIONS

    Full text link
    We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems like small magnetic clusters, we consider models with free boundary conditions. For a field driven transition with two coexisting phases at the infinite volume transition point h=hth=h_t, we prove that the low temperature finite volume magnetization m_{\free}(L,h) per site in a cubic volume of size LdL^d behaves like m_\free(L,h)=\frac{m_++m_-}2 + \frac{m_+-m_-}2 \tanh \bigl(\frac{m_+-m_-}2\,L^d\, (h-h_\chi(L))\bigr)+O(1/L), where hχ(L)h_\chi(L) is the position of the maximum of the (finite volume) susceptibility and m±m_\pm are the infinite volume magnetizations at h=ht+0h=h_t+0 and h=ht0h=h_t-0, respectively. We show that hχ(L)h_\chi(L) is shifted by an amount proportional to 1/L1/L with respect to the infinite volume transitions point hth_t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boun\- dary conditons, which for an asymmetric transition with two coexisting phases is proportional only to 1/L2d1/L^{2d}. One also consider the position hU(L)h_U(L) of the maximum of the so called Binder cummulant U_\free(L,h). While it is again shifted by an amount proportional to 1/L1/L with respect to the infinite volume transition point hth_t, its shift with respect to hχ(L)h_\chi(L) is of the much smaller order 1/L2d1/L^{2d}. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L2d1/L^{2d} term, the relative shift is the same as that for periodic boundary conditions.Comment: 65 pages, amstex, 1 PostScript figur

    First-order transition features of the triangular Ising model with nearest- and next-nearest-neighbor antiferromagnetic interactions

    Get PDF
    We implement a new and accurate numerical entropic scheme to investigate the first-order transition features of the triangular Ising model with nearest-neighbor (JnnJ_{nn}) and next-nearest-neighbor (JnnnJ_{nnn}) antiferromagnetic interactions in ratio R=Jnn/Jnnn=1R=J_{nn}/J_{nnn}=1. Important aspects of the existing theories of first-order transitions are briefly reviewed, tested on this model, and compared with previous work on the Potts model. Using lattices with linear sizes L=30,40,...,100,120,140,160,200,240,360L=30,40,...,100,120,140,160,200,240,360 and 480 we estimate the thermal characteristics of the present weak first-order transition. Our results improve the original estimates of Rastelli et al. and verify all the generally accepted predictions of the finite-size scaling theory of first-order transitions, including transition point shifts, thermal, and magnetic anomalies. However, two of our findings are not compatible with current phenomenological expectations. The behavior of transition points, derived from the number-of-phases parameter, is not in accordance with the theoretically conjectured exponentially small shift behavior and the well-known double Gaussian approximation does not correctly describe higher correction terms of the energy cumulants. It is argued that this discrepancy has its origin in the commonly neglected contributions from domain wall corrections.Comment: 34 pages, 11 figure

    Longitudinal spin relaxation in simple stochastic models for disordered systems

    Get PDF
    The relaxation of single probe spins was investigated for simple models of systems with quenched disorder. The spin relaxation was calculated for a two-site model with arbitrarily oriented magnetic fields and the result was averaged over various distributions of the fields, and of the hopping rates of the spin. On an intermediate time scale, a modified Kubo-Toyabe behavior is obtained for large hopping rates, in agreement with recent SR experiments. A stretched-exponential decay of the spin polarization is obtained at longer times. The Kohlrausch exponent is found to be field and hopping-rate dependent, in qualitative agreement with recent NMR and -NMR experiments. The resulting longitudinal relaxation rate still does not show the significant deviations from the Bloembergen-Purcell-Pound (BPP) behavior that are typical for glassy systems. Therefore, the random two-frequency model was extended to include time-dependent renewals of the environment. This modification may yield asymmetric peaks for the longitudinal relaxation rate in the BPP plot for very large renewal rates. © 1995 The American Physical Society

    Finite Size Effects in Fluid Interfaces

    Full text link
    It is shown that finite size effects in the free energy of a rough interface of the 3D Ising and three--state Potts models are well described by the capillary wave model at {\em two--loop} order. The agreement between theoretical predictions and Monte Carlo simulations strongly supports the idea of the universality of this description of order--order interfaces in 3D statistical systems above the roughening temperature.Comment: 3 pages, uuencoded .ps file, figures included. (Proceeding of Lattice '93

    Fisher Zeroes and Singular Behaviour of the Two Dimensional Potts Model in the Thermodynamic Limit

    Get PDF
    The duality transformation is applied to the Fisher zeroes near the ferromagnetic critical point in the q>4 state two dimensional Potts model. A requirement that the locus of the duals of the zeroes be identical to the dual of the locus of zeroes in the thermodynamic limit (i) recovers the ratio of specific heat to internal energy discontinuity at criticality and the relationships between the discontinuities of higher cumulants and (ii) identifies duality with complex conjugation. Conjecturing that all zeroes governing ferromagnetic singular behaviour satisfy the latter requirement gives the full locus of such Fisher zeroes to be a circle. This locus, together with the density of zeroes is then shown to be sufficient to recover the singular form of the thermodynamic functions in the thermodynamic limit.Comment: 10 pages, 0 figures, LaTeX. Paper expanded and 2 references added clarifying duality relationships between discontinuities in higher cumulant

    Simulation of fatigue-initiated subacromial impingement: clarifying mechanisms

    Get PDF
    AbstractSubacromial impingement in the shoulder precedes many cases of rotator cuff pathology. However, debate exists regarding the mechanism, and even existence, of fatigue-initiated impingement. The controversy centers on two primary impingement mechanisms: 1) superior humeral head migration and 2) scapular reorientation. A linked series of in vivo experiments and in silica simulations accomplishes the integration of stochastic, orthopedic, geometric, kinematic, physiologic, literature-derived, and experimental data sources to help resolve the mechanism debate. A major focus is the multi-scale modeling of relevant variability. The described techniques have direct implications for musculoskeletal modeling and simulation of the shoulder region, with specific application to assessing occupational and activities of daily living in diverse populations

    Multigraph limit of the dense configuration model and the preferential attachment graph

    Full text link
    The configuration model is the most natural model to generate a random multigraph with a given degree sequence. We use the notion of dense graph limits to characterize the special form of limit objects of convergent sequences of configuration models. We apply these results to calculate the limit object corresponding to the dense preferential attachment graph and the edge reconnecting model. Our main tools in doing so are (1) the relation between the theory of graph limits and that of partially exchangeable random arrays (2) an explicit construction of our random graphs that uses urn models.Comment: Some of the results of this submission already appeared in an older version of arXiv:0912.3904v3, "Time evolution of dense multigraph limits under edge-conservative preferential attachment dynamics." Accepted for publication in Acta Mathematica Hungaric

    Monte Carlo Study of Cluster-Diameter Distribution: A New Observable to Estimate Correlation Lengths

    Get PDF
    We report numerical simulations of two-dimensional qq-state Potts models with emphasis on a new quantity for the computation of spatial correlation lengths. This quantity is the cluster-diameter distribution function Gdiam(x)G_{diam}(x), which measures the distribution of the diameter of stochastically defined cluster. Theoretically it is predicted to fall off exponentially for large diameter xx, Gdiamexp(x/ξ)G_{diam} \propto \exp(-x/\xi), where ξ\xi is the correlation length as usually defined through the large-distance behavior of two-point correlation functions. The results of our extensive Monte Carlo study in the disordered phase of the models with q=10q=10, 15, and 2020 on large square lattices of size 300×300300 \times 300, 120×120120 \times 120, and 80×8080 \times 80, respectively, clearly confirm the theoretically predicted behavior. Moreover, using this observable we are able to verify an exact formula for the correlation length ξd(βt)\xi_d(\beta_t) in the disordered phase at the first-order transition point βt\beta_t with an accuracy of about 11%-2% for all considered values of qq. This is a considerable improvement over estimates derived from the large-distance behavior of standard (projected) two-point correlation functions, which are also discussed for comparison.Comment: 20 pages, LaTeX + 13 postscript figures. See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    The free energy of the Potts model: from the continuous to the first-order transition region

    Full text link
    We present a large qq expansion of the 2d qq-states Potts model free energies up to order 9 in 1/q1/\sqrt{q}. Its analysis leads us to an ansatz which, in the first-order region, incorporates properties inferred from the known critical regime at q=4q=4, and predicts, for q>4q>4, the nthn^{\rm th} energy cumulant scales as the power (3n/22)(3 n /2-2) of the correlation length. The parameter-free energy distributions reproduce accurately, without reference to any interface effect, the numerical data obtained in a simulation for q=10q=10 with lattices of linear dimensions up to L=50. The pure phase specific heats are predicted to be much larger, at q10q\leq10, than the values extracted from current finite size scaling analysis of extrema. Implications for safe numerical determinations of interface tensions are discussed.Comment: 11 pages, plain tex with 3 Postscript figures included Postscript file available by anonymous ftp://amoco.saclay.cea.fr/pubs.spht/93-022.p

    Glassiness Vs. Order in Densely Frustrated Josephson Arrays

    Full text link
    We carry out extensive Monte Carlo simulations on the Coulomb gas dual to the uniformly frustrated two dimensional XY model, for a sequence of frustrations f converging to the irraltional (3-sqrt 5)/2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T_c which varies only slightly with f. This ordered vortex structure remains in general phase incoherent until a lower pinning transition T_p(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects.Comment: 4 pages, 4 eps figure
    corecore