research

Monte Carlo Study of Cluster-Diameter Distribution: A New Observable to Estimate Correlation Lengths

Abstract

We report numerical simulations of two-dimensional qq-state Potts models with emphasis on a new quantity for the computation of spatial correlation lengths. This quantity is the cluster-diameter distribution function Gdiam(x)G_{diam}(x), which measures the distribution of the diameter of stochastically defined cluster. Theoretically it is predicted to fall off exponentially for large diameter xx, Gdiamexp(x/ξ)G_{diam} \propto \exp(-x/\xi), where ξ\xi is the correlation length as usually defined through the large-distance behavior of two-point correlation functions. The results of our extensive Monte Carlo study in the disordered phase of the models with q=10q=10, 15, and 2020 on large square lattices of size 300×300300 \times 300, 120×120120 \times 120, and 80×8080 \times 80, respectively, clearly confirm the theoretically predicted behavior. Moreover, using this observable we are able to verify an exact formula for the correlation length ξd(βt)\xi_d(\beta_t) in the disordered phase at the first-order transition point βt\beta_t with an accuracy of about 11%-2% for all considered values of qq. This is a considerable improvement over estimates derived from the large-distance behavior of standard (projected) two-point correlation functions, which are also discussed for comparison.Comment: 20 pages, LaTeX + 13 postscript figures. See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    Similar works

    Available Versions

    Last time updated on 02/01/2020