28 research outputs found

    Expression and Functional Characterization of the Cancer-related Serine Protease, Human Tissue Kallikrein 14

    Get PDF
    Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated

    Expression of human Kallikrein 14 (KLK14) in breast cancer is associated with higher tumour grades and positive nodal status

    Get PDF
    Human kallikrein 14 (KLK14) is a steroid hormone-regulated member of the tissue kallikrein family of serine proteases, for which a prognostic and diagnostic value in breast cancer has been suggested. To further characterise the value of KLK14 as a breast tumour marker, we have carefully analysed KLK14 expression in normal breast tissue and breast cancer both on the RNA level by real-time RT-PCR (n=39), and on the protein level (n=127) using a KLK14-specific antibody for immunohistochemistry. We correlated KLK14 protein expression data with available clinico-pathological parameters (mean follow-up time was 55 months) including patient prognosis. KLK14 RNA expression as quantified by real-time RT-PCR was significantly more abundant in breast tumours compared to normal breast tissue (P=0.027), an issue that had not been clarified recently. Concordantly with the RNA data, cytoplasmic KLK14 protein expression was significantly higher in invasive breast carcinomas compared to normal breast tissues (P=0.003). Furthermore, KLK14 protein expression was associated with higher tumour grade (P=0.041) and positive nodal status (P=0.045) but was not significantly associated with shortened disease-free or overall patient survival time in univariate analyses. We conclude that KLK14 is clearly overexpressed in breast cancer in comparison to normal breast tissues and is positively associated with conventional parameters of tumour aggressiveness, but due to a missing association with survival times, the use of KLK14 immunohistochemistry as a prognostic marker in breast cancer is questionable

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs

    Human Tissue Kallikreins: From Gene Structure to Function and Clinical Applications

    No full text
    Kallikreins are serine proteases with diverse physiological functions. Until recently, it was thought that the human kallikrein gene family included only three members, but recent studies have led to the complete characterization of the human kallikrein gene locus and identification of all 15 members of this family. Kallikreins are expressed in many organs, most prominently in endocrine-related tissues such as the prostate, breast, ovary, uterus, vagina, and testis. Many kallikreins are regulated by steroid hormones in cancer cell lines, and several lines of investigation have supported a link between kallikreins and cancer. Prostate-specific antigen (PSA, hK3) and, more recently, human glandular kallikrein 2 (hK2) are used as tumor markers for prostate cancer. Several other kallikreins, including hK5, hK6, hK8, hK10, hK11, and hK14, are emerging as new serum biomarkers for ovarian cancer diagnosis and prognosis. Some other kallikreins are differentially expressed at both the mRNA and protein levels in various endocrine-related malignancies. The coexpression of many kallikreins in several cancer types and other information points to the possibility of their involvement in a cascade-like pathway that may be associated with cancer pathogenesis or progression. Finally, in addition to their diagnostic/prognostic utilities, kallikreins may be attractive novel therapeutic targets. © 2005 Elsevier Inc. All rights reserved

    Selective cleavage of human sex hormone-binding globulin by kallikrein-related peptidases and effects on androgen action in LNCaP prostate cancer cells

    Get PDF
    Free to read on publisher website Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro
    corecore