63 research outputs found

    How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics

    Get PDF
    Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading

    Digitalized Cognitive Assessment mediated by a Virtual Caregiver

    Get PDF
    The ageing of the population deeply impacts on the social costs relative to health care. The use of modern technologies is one of the most promising approaches, under current study, to reduce such impact. In this demonstration, we propose a framework that can be employed for at-home assessment of Mild Cognitive Impairment (MCI). It is composed by a set of digitalized cognitive tests, developed from their paper-and-pencil counterparts, and by a Virtual Caregiver, which oversees the test execution and provides instructions.</jats:p

    Evaluating the Acceptability of Assistive Robots for Early Detection of Mild Cognitive Impairment

    Get PDF
    The employment of Social Assistive Robots (SARs) for monitoring elderly users represents a valuable gateway for at-home assistance. Their deployment in the house of the users can provide effective opportunities for early detection of Mild Cognitive Impairment (MCI), a condition of increasing impact in our aging society, by means of digitalized cognitive tests. In this work, we present a system where a specific set of cognitive tests is selected, digitalized, and integrated with a robotic assistant, whose task is the guidance and supervision of the users during the completion of such tests. The system is then evaluated by means of an experimental study involving potential future users, in order to assess its acceptability and identify key directions for technical improvements

    Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications

    Get PDF
    Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.This work was supported by the strategic programme UID/BIA/04050/2019 funded by Portuguese fundsthrough the FCT I.P., and the projects: PTDC/BIAMIC/5184/2014, funded by national funds through the Fundacao para a Ciencia e Tecnologia (FCT) I.P. and by the European Regional Development Fund (ERDF) through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI), and EcoAgriFood: Innovative green products and processes to promote AgriFood BioEconomy (operacao NORTE-01-0145-FEDER-000009), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). DR acknowledges FCT for the SFRH/BD/96166/2013 PhD grant. MSS acknowledges the Norte2020 for the UMINHO/BD/25/2016 PhD grant with the reference NORTE-08-5369-FSE-000060. TR acknowledges Yeastdoc European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 764927

    Control of interjoint coordination during the swing phase of normal gait at different speeds

    Get PDF
    BACKGROUND: It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. METHODS: Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. RESULTS: The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. CONCLUSION: Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint

    Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    Get PDF
    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25&thinsp;±&thinsp;2 years, n&thinsp;=&thinsp;18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG&thinsp;→&thinsp;SBP) as well as control the postural sway (EMG&thinsp;→&thinsp;COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69&thinsp;±&thinsp;4 years, n&thinsp;=&thinsp;14). A significant (p&thinsp;=&thinsp;0.002) decline in EMG&thinsp;→&thinsp;SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness

    Transient reversal of the stretch reflex in human arm muscles

    No full text
    1. Load perturbation responses can violate the law of reciprocal innervation between antagonist muscles under particular conditions. Thus flexor and extensor muscles of wrist and elbow joints are reflexly coactivated by the impact of a ball on the hand during a catching task. The aim of this study was to determine whether reflex coactivation can be preset within the central nervous system (CNS) or whether it is entirely due to the peripheral stimulus. To this end, we studied the behavior of stretch reflex responses of arm muscles evoked by torque motor perturbations applied before and during the catching task. 2. Subjects were instructed to catch a ball dropped from 1.6 m. A torque motor delivered perturbations to the elbow joint, resulting in angular motion at both elbow and wrist joints because of their dynamic mechanical coupling. Two series of experiments were performed that differed in the perturbation waveform. In the first series, a single torque pulse could be randomly applied at different times during the task. The corresponding responses were recovered by subtracting the average of the unperturbed trials from the averages of perturbed trials. In the second series of experiments, a train of pseudorandom pulses was applied continuously during each trial. The time-varying impulse responses were computed at 20-ms intervals by cross-correlation methods. 3. The pattern of the short-latency electromyographic responses evoked by either single pulses or pseudorandom perturbations obeyed the law of reciprocal innervation of antagonist muscles under basal conditions. However, the pattern of the responses evoked by the same perturbations around the time of ball impact on the hand consisted of a substantial coactivation of both stretched and shortening muscles. Reflex coactivation resulted from response patterns that differed at different joints. At the elbow, reflex coactivation resulted from a transient reversal of the direction of the short-latency responses of flexor muscles, with little changes of the responses of extensor muscles. At the wrist, instead, reflex coactivation resulted from simultaneous changes in the response waveform of both flexor and extensor muscles. 4. The peripheral conditions associated with the applied perturbations were constant before the time of ball impact. Thus, because the changes of the stretch reflex responses began before that time, they must have been generated within the CNS. It is here hypothesized that the reversal of the reflex responses is centrally gated by switching from the pathways of reciprocal inhibition to those of coactivation of antagonist alpha-motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS

    Time-varying mechanical behavior of multijointed arm in man

    No full text
    1. The aim of this study was to describe the time-varying changes in the mechanical parameters of a multijointed limb. The parameters we considered are the coefficients of stiffness, viscosity, and inertia. Continuous pseudorandom perturbations were applied at the elbow joint during a catching task. A modified version of an ensemble technique was used for the identification of time-varying parameters. Torques at the elbow and wrist joints were then modeled with a linear combination of the changes in angular position and velocity weighted by the matrix of angular stiffness and the matrix of angular viscosity, respectively. Control experiments were also performed that involved the stationary maintenance of a given limb posture by resisting actively the applied perturbations. Different limb postures were examined in each such experiment to investigate the dependence of the mechanical parameters on limb geometry. 2. The technique for the identification of limb mechanical parameters proved adequate. The input perturbations applied at the elbow joint elicited angular oscillations at the wrist essentially uncorrelated with those produced at the elbow. The frequency of oscillation is much higher at the wrist than at the elbow, mainly because of the smaller inertia. The variance accounted for by the model was approximately 80% under both stationary and time-varying conditions; in the latter case the value did not vary significantly throughout the task. In addition, the model predicted values of the inertial parameters that were close to the anthropometric measures, and it reproduced the stepwise increase in limb inertia that occurs at the time the ball is held in the hand. 3. The values of angular stiffness and viscosity estimated under stationary conditions did not vary significantly with joint angle, in agreement with previous results obtained under quasi-static postural conditions. The matrix of the coefficients of angular stiffness was not symmetrical, indicating a prominent role for nonautogenic reflex feedbacks with unequal gains for elbow and wrist muscles. 4. A complex temporal modulation of angular stiffness and viscosity was observed during the catching task. The changes in the direct coefficients of angular stiffness tended to covary with those in the coupling coefficients from trial start up to approximately 30 ms before impact time. Around impact time, however, there was a complete dissociation: the direct terms peaked, whereas the coupling terms dropped. The direct terms of angular viscosity also increased before impact, whereas the viscosity coupling terms remained close to zero throughout.(ABSTRACT TRUNCATED AT 400 WORDS

    Transient reversal of the stretch reflex in human arm muscles

    No full text
    1. Load perturbation responses can violate the law of reciprocal innervation between antagonist muscles under particular conditions. Thus flexor and extensor muscles of wrist and elbow joints are reflexly coactivated by the impact of a ball on the hand during a catching task. The aim of this study was to determine whether reflex coactivation can be preset within the central nervous system (CNS) or whether it is entirely due to the peripheral stimulus. To this end, we studied the behavior of stretch reflex responses of arm muscles evoked by torque motor perturbations applied before and during the catching task. 2. Subjects were instructed to catch a ball dropped from 1.6 m. A torque motor delivered perturbations to the elbow joint, resulting in angular motion at both elbow and wrist joints because of their dynamic mechanical coupling. Two series of experiments were performed that differed in the perturbation waveform. In the first series, a single torque pulse could be randomly applied at different times during the task. The corresponding responses were recovered by subtracting the average of the unperturbed trials from the averages of perturbed trials. In the second series of experiments, a train of pseudorandom pulses was applied continuously during each trial. The time-varying impulse responses were computed at 20-ms intervals by cross-correlation methods. 3. The pattern of the short-latency electromyographic responses evoked by either single pulses or pseudorandom perturbations obeyed the law of reciprocal innervation of antagonist muscles under basal conditions. However, the pattern of the responses evoked by the same perturbations around the time of ball impact on the hand consisted of a substantial coactivation of both stretched and shortening muscles. Reflex coactivation resulted from response patterns that differed at different joints. At the elbow, reflex coactivation resulted from a transient reversal of the direction of the short-latency responses of flexor muscles, with little changes of the responses of extensor muscles. At the wrist, instead, reflex coactivation resulted from simultaneous changes in the response waveform of both flexor and extensor muscles. 4. The peripheral conditions associated with the applied perturbations were constant before the time of ball impact. Thus, because the changes of the stretch reflex responses began before that time, they must have been generated within the CNS. It is here hypothesized that the reversal of the reflex responses is centrally gated by switching from the pathways of reciprocal inhibition to those of coactivation of antagonist alpha-motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS
    • …
    corecore