11 research outputs found

    Photonic Intermediate Structures for Perovskite/c-Silicon Four Terminal Tandem Solar Cells

    Get PDF
    Tandem perovskite/silicon devices are promising candidates for highly efficient and low-cost solar cells. Such tandem solar cells, however, require careful photon management for optimum performance, which can be achieved with intermediate photonic structures. Here, we identify the ideal requirements for such intermediate structures in perovskite/silicon tandem cells. Counter-intuitively, we find that the reflectance in the perovskite absorption window, i.e., below approx. 800 nm wavelength, does not have a strong impact on the tandem performance. Instead, the main function of the intermediate structure is to act as an optical impedance matching layer at the perovskite–silicon interface. This insight affords the design of simple and tolerant photonic structures that can obtain efficiencies surpassing 30%, assuming a passivated emitter, rear locally diffused (PERL) bottom cell and realistic perovskite top cell, by optical impedance matching alone

    Metal-insulator-metal surface plasmon polariton waveguide filters with cascaded transverse cavities

    Get PDF
    In this work we propose a new approach for the design of resonant structures aiming at wavelength filtering applications. The structure consists of a subwavelength metal-insulator-metal (MIM) waveguide presenting cascaded cavities transversely arranged in the midpoint between the input and output ports. An extra degree of freedom added to this design consists in tilting the cavities around their midpoints which, besides effectively increasing the quality factor of the cavity, helps extending its range of applications by tuning multiple wavelengths.INCT - INOFFAPESPCNP

    Influence of film thickness on the optical transmission through subwavelength single slits in metallic thin films

    Get PDF
    Silver and gold films with thicknesses in the range of 120-450 nm were evaporated onto glass substrates. A sequence of slits with widths varying between 70 and 270 nm was milled in the films using a focused gallium ion beam. We have undertaken high-resolution measurements of the optical transmission through the single slits with 488.0 nm (for Ag) and 632.8 nm (for Au) laser sources aligned to the optical axis of a microscope. Based on the present experimental results, it was possible to observe that (1) the slit transmission is notably affected by the film thickness, which presents a damped oscillatory behavior as the thickness is augmented, and (2) the transmission increases linearly with increasing slit width for a fixed film thickness.FAPESPCNPqCePOF / INCT - INO

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Analysis of dispersive and dissipative media with optical resonances

    No full text
    In this paper we analyze the problem of light-matter interaction when absorptive resonances are imbedded in the material dispersion. We apply an improved approach to aluminum (Al) in the optical frequency range to investigate the impact of these resonances on the operating characteristics of Al-based nanoscale devices. Quantities such as group velocity, stored energy density, and energy velocity, normally obtained using a single resonance model [Wave Propagation and Group Velocity (Academic Press, 1960), Nat. Mater. 11, 208 (2012)], are now accurately calculated regardless of the medium adopted. We adapt the Loudon approach [Nat. Mater. 11, 208 (2012)] to media with several optical resonances and present the details of the extended model. We also show pertinent results for Al-based metal-dielectric-metal (MDM) waveguides, around spectral resonances. The model delineated here can be applied readily to any metal accurately characterized by Drude-Lorentz spectral resonance features. (C) 2012 Optical Society of AmericaFAPESPFAPESPCNPqCNP

    Gestão financeira: análise de fluxos financeiros

    No full text
    Estrutura da Obra: CAPÍTULO I - Finanças Empresariais CAPÍTULO II - Análise de Investimentos CAPÍTULO III - Finanças Internacionais CAPÍTULO IV - Anexos (provenientes do IAPMEI): - Anexo A e Anexo Bsta obra é um livro de exercícios, um auxiliar de estudo que permite recapitular conceitos, consolidar e aprofundar conhecimentos em Gestão Financeira. Todos os capítulos possuem exercícios propostos e resolvidos. Trata-se de uma obra de apoio a duas outras publicadas pela Vida Económica, a saber: Gestão Financeira: Análise de Fluxos Financeiros e Gestão Financeira: Análise de Investimentos. Inclui, com autorização do IAPMEI, um esquema de elaboração de um plano de negócio

    Fabrication and analysis of self-assembled photonic crystals structures

    No full text
    This paper presents the fabrication and analysis of a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Experimental optical characterization, achieved by measurements of the specular reflectance under variable angles, indicated the clear presence of a Bragg diffraction pattern. Results are further explored by theoretical calculations based on the Finite Difference Time Domain (FDTD) method to determine the full PhC band structure

    Activated Biochar-Based Organomineral Fertilizer Delays Nitrogen Release and Reduces N2O Emission

    No full text
    Leaching and nitrous oxide (N2O) emissions can represent substantial nitrogen (N) losses from chemical fertilizers, and slow-release fertilizers (SRFs) can mitigate these effects. Thus, biochar can be an alternative from an agronomic and environmental point of view to synthesize SRFs due to its physicochemical characteristics. We investigated the effect of nitrogenous organomineral fertilizers (OMF-N) formulated based on activated biochar on N losses by leaching and N2O emissions. The OMF-N were developed from a dry mechanical pelleting process with different biochar and urea proportions (2:1; 1:2, and 1:4). Three experiments were conducted using four fertilizer sources (urea, OMF-N 2:1, OMF-N 1:2, and OMF-N 1:4): i. to analyze the kinetics of N release from OMF-N at times: 5, 15, 30, 60, 90, and 120 min; ii. for N2O emission analysis determined at 3, 6, 10, 14, 24, 44, 54, 64, 74, 84, 104, and 118 days after application to the soil; and iii. for a double factorial design that was adopted to analyze N leaching, consisting of the combination of applying 160 kg N ha−1 of fertilizers in PVC columns at different depths (20, 40, 60, and 80 cm) and analyzed at five times (1, 7, 14, 21, and 28 days). FTIR spectroscopic analysis, specific surface area, porosity, and surface morphology showed physicochemical interactions of N of the OMF with biochar; the N from the OMF interacts physically and chemically binds to the functional surfaces of biochar, delaying the dissolution flow. The OMF-N proved capable of retaining 48% to 60% more NH4+ and reduced the release of Ntotal from urea from 27% to 60%, as well as reduced N2O emissions from 47% to 66%. Although absolute CO2 emissions intensified with the application of OMF-N, its use provides C sequestration in the soil to due to the recalcitrant C of the biochar, which results in a positive input-output balance in the system. The NO3− concentration profiles revealed that the OMF-N application was able to reduce leaching in the soil to a depth of 80 cm. These studies enabled better understanding of the processes involved in the biochar:urea interaction and revealed that biochar can be used as an organic matrix in the synthesis of SRF
    corecore