1,590 research outputs found

    Hydrogeological characterization of peculiar Apenninic springs

    Get PDF
    Abstract. In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012–2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs

    Kinematic Analysis of the 2020 Elliot Creek Landslide, British Columbia, Using Remote Sensing Data

    Get PDF
    The 2020 Elliot Creek landslide-tsunami-flood cascade originated from an 18.3 Mm3 rock slope failure in quartz diorite bedrock in a valley undergoing rapid glacial retreat. We used airborne LiDAR and optical imagery to characterize the slope and its surroundings. Using the LiDAR, we determined that two rockslides (2020 and an older undated one) occurred on this slope and shared a common basal rupture surface. We mapped two main sets of lineaments that represent structures that controlled the orientation of the lateral and rear release surfaces. Analysis of the topographic profile indicates a wedge-shaped failure block and a stepped rupture surface. Further topographic profile analysis indicates the possibility of a structurally controlled geomorphic step in the valley that corresponds with a change in the orientation of the valley. The rapid retreat of the West Grenville Glacier and the positions of the rupture surfaces suggest glacial retreat played a role in the landslides

    Characterizing Distances of Networks on the Tensor Manifold

    Full text link
    At the core of understanding dynamical systems is the ability to maintain and control the systems behavior that includes notions of robustness, heterogeneity, or regime-shift detection. Recently, to explore such functional properties, a convenient representation has been to model such dynamical systems as a weighted graph consisting of a finite, but very large number of interacting agents. This said, there exists very limited relevant statistical theory that is able cope with real-life data, i.e., how does perform analysis and/or statistics over a family of networks as opposed to a specific network or network-to-network variation. Here, we are interested in the analysis of network families whereby each network represents a point on an underlying statistical manifold. To do so, we explore the Riemannian structure of the tensor manifold developed by Pennec previously applied to Diffusion Tensor Imaging (DTI) towards the problem of network analysis. In particular, while this note focuses on Pennec definition of geodesics amongst a family of networks, we show how it lays the foundation for future work for developing measures of network robustness for regime-shift detection. We conclude with experiments highlighting the proposed distance on synthetic networks and an application towards biological (stem-cell) systems.Comment: This paper is accepted at 8th International Conference on Complex Networks 201

    From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth

    Get PDF
    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain

    Assessing Family Functioning Before and After an Integrated Multidisciplinary Family Treatment for Adolescents With Restrictive Eating Disorders

    Get PDF
    The present study presents an investigation of family functioning in the families of adolescents with severe restrictive eating disorders (REDs) assessed before and 6 months after a multidisciplinary family treatment program that combined psychodynamic psychotherapy, parental role intervention, and triadic or family-centered interventions. Nutritional counseling and neuropsychiatric monitoring of the overall treatment and care process were also provided. Family functioning was assessed using the clinical version of the Lausanne Trilogue Play (LTPc), a semi-structured procedure for observing family dynamics, previously validated for this patient population. The LTPc is divided into four phases. In phase 1, the mother interacts with the patient while the father assumes the role of observer. In phase 2, the father plans an activity with the patient while the mother observes. In phase 3, all the family members interact. Finally, in phase 4, the parents talk while the adolescent observes. A significant change emerged in family functioning after the treatment, but only for the interactive phase 2, when the father is required to interact with the daughter while the mother silently observes. The results of this study suggest that a relatively brief multidisciplinary treatment program may significantly improve family functioning in the families of patients diagnosed with severe REDs. Although appropriate clinical trials are needed to further test the efficacy of this treatment, the results also reinforce the concept that treatment programs targeting the individual patient and both the parents should be a first-line approach in adolescents with severe REDs

    Back analysis of the 2014 San Leo Landslide using combined terrestrial laser scanning and 3D distinct element modelling

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via http://dx.doi.org/10.1007/s00603-015-0763-5© 2015 Springer-Verlag Wien Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. The edges of these plateaux are often the location of rapid landslide phenomena, such as rock slides, rock falls and topples. In this paper, we present a back analysis of a recent landslide (February 2014), involving the north-eastern sector of the San Leo rock slab (northern Apennines, Emilia-Romagna Region) which is a representative example of this type of phenomena. The aquifer hosted in the fractured slab, due to its relatively higher secondary permeability in comparison to the lower clayey units leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales have led to the progressive undermining of the slab, eventually predisposing large-scale landslides. Stability analyses were conducted coupling terrestrial laser scanning (TLS) and distinct element methods (DEMs). TLS point clouds were analysed to determine the pre- and post-failure geometry, the extension of the detachment area and the joint network characteristics. The block dimensions in the landslide deposit were mapped and used to infer the spacing of the discontinuities for insertion into the numerical model. Three-dimensional distinct element simulations were conducted, with and without undermining of the rock slab. The analyses allowed an assessment of the role of the undermining, together with the presence of an almost vertical joint set, striking sub-parallel to the cliff orientation, on the development of the slope instability processes. Based on the TLS and on the numerical simulation results, an interpretation of the landslide mechanism is proposed

    Multiplex Matrix Metalloproteinases Analysis in the Cerebrospinal Fluid Reveals Potential Specific Patterns in Multiple Sclerosis Patients.

    Get PDF
    Background: Matrix metalloproteinases (MMPs) are pleiotropic enzymes involved in extracellular protein degradation and turnover. MMPs are implicated in the pathogenesis of many neurological diseases, including multiple sclerosis (MS). Objective: To search the level of MMPs in the cerebrospinal fluid (CSF) of MS patients and detect possible disease-specific patterns. Methods: CSF samples from 32 MS patients and, from 15 control subjects with other inflammatory neurological diseases (OIND) were analyzed. The Bio-Plex Pro Human MMP 9-Plex Panel (Bio-Rad) was used for the quantification of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-12, and MMP-13. Results: CSF MMP-1 and MMP-12 levels were significantly reduced in MS as compared with OIND. In MS patients' CSF: (i) MMP-1 levels were significantly higher in women vs. men; (ii) MMP-10 concentrations were higher in patients with CSF-restricted IgG oligoclonal bands, and (iii) MMP-7 levels were increased in patients with longer disease duration. In the OIND group MMP-7 and MMP-12 levels significantly and directly correlated with age. Conclusions: Our study contributes to investigating the role of MMPs in MS, with regard to CSF immunological features and disease duration. Sex-specific differences were also detected in MMPs CSF levels

    Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education

    Get PDF
    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment, considering two different dimensions: (1) to organize the education process as a social network-based process; and (2) to analyze the students' interactions in the context of evaluation of the students learning performance. The objective of this paper is to present a new model for students evaluation based on their behavior during the course and its validation in comparison with the traditional model of students' evaluation. The validation of the new evaluation model is made through an analysis of the correlation between social network analysis measures (degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and average tie strength) and the grades obtained by students (grades for quality of work, grades for volume of work, grades for diversity of work, and final grades) in a social network-based engineering education. The main finding is that the obtained correlation results can be used to make the process of the students' performance evaluation based on students interactions (behavior) analysis, to make the evaluation partially automatic, increasing the objectivity and productivity of teachers and allowing a more scalable process of evaluation. The results also contribute to the behavioural theory of learning performance evaluation. More specific findings related to the correlation analysis are: (1) the more different interactions a student had (degree centrality) and the more frequently the student was between the interaction paths of other students (betweenness centrality), the better was the quality of the work; (2) all five social network measures had a positive and strong correlation with the grade for volume of work and with the final graThe authors wish to acknowledge the support of the Fundacao para a Ciencia e Tecnologia (FCT), Portugal, through the Grants "Projeto Estrategico-UI 252-2011-2012'' reference PEst-OE/EME/UI0252/2011, "Ph.D. Scholarship Grant'' reference SFRH/BD/85672/2012, and the support of Parallel Planes Lda.info:eu-repo/semantics/publishedVersio

    Pain-related increase in serotonin transporter gene methylation associates with emotional regulation in 4.5-year-old preterm-born children.

    Get PDF
    The main goal of this study was to assess the association between pain-related increase in serotonin transporter gene (SLC6A4) methylation and emotional dysregulation in 4.5-year-old preterm children compared with full-term matched counterparts. METHODS: Preterm (n = 29) and full-term (n = 26) children recruited from two Italian hospitals were followed-up from October 2011 to December 2017. SLC6A4 methylation was assessed from cord blood at birth from both groups and peripheral blood at discharge for preterm ones. At 4.5 years, emotional regulation (ie, anger, fear and sadness) was assessed through an observational standardised procedure. RESULTS: Preterm children (18 females; mean age = 4.5, range = 4.3-4.8) showed greater anger display compared with full-term controls (14 females; mean age = 4.5, range = 4.4-4.9) in response to emotional stress. Controlling for adverse life events occurrence from discharge to 4.5 years and SLC6A4 methylation at birth, CpG-specific SLC6A4 methylation in the neonatal period was predictive of greater anger display in preterm children but not in full-term ones. CONCLUSION: These findings contribute to highlight how epigenetic regulation of serotonin transporter gene in response to NICU pain exposure contributes to long-lasting programming of anger regulation in preterm children
    • …
    corecore