229 research outputs found
The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment
This study investigates the role of soil moisture on the threshold runoff response in a small headwater catchment in the Italian Alps that is characterised by steep hillslopes and a distinct riparian zone. This study focuses on: (i) the threshold soil moisture-runoff relationship and the influence of catchment topography on this relation; (ii) the temporal dynamics of soil moisture, streamflow and groundwater that characterize the catchment's response to rainfall during dry and wet periods; and (iii) the combined effect of antecedent wetness conditions and rainfall amount on hillslope and riparian runoff. Our results highlight the strong control exerted by soil moisture on runoff in this catchment: a sharp threshold exists in the relationship between soil water content and runoff coefficient, streamflow, and hillslope-averaged depth to water table. Low runoff ratios were likely related to the response of the riparian zone, which was almost always close to saturation. High runoff ratios occurred during wet antecedent conditions, when the soil moisture threshold was exceeded. In these cases, subsurface flow was activated on hillslopes, which became a major contributor to runoff. Antecedent wetness conditions also controlled the catchment's response time: during dry periods, streamflow reacted and peaked prior to hillslope soil moisture whereas during wet conditions the opposite occurred. This difference resulted in a hysteretic behaviour in the soil moisture-streamflow relationship. Finally, the influence of antecedent moisture conditions on runoff was also evident in the relation between cumulative rainfall and total stormflow. Small storms during dry conditions produced low stormflow amounts, likely mainly from overland flow from the near saturated riparian zone. Conversely, for rainfall events during wet conditions, higher stormflow values were observed and hillslopes must have contributed to streamflow
Analysis of threshold voltage instabilities in semi-vertical GaN-on-Si FETs
We present a first study of threshold voltage instabilities of semi-vertical GaN-on-Si trench-MOSFETs, based on double pulsed, threshold voltage transient, and UV-Assisted C-V analysis. Under positive gate stress, small negative V th shifts (low stress) and a positive V thshifts (high stress) are observed, ascribed to trapping within the insulator and at the metal/insulator interface. Trapping effects are eliminated through exposure to UV light; wavelength-dependent analysis extracts the threshold de-Trapping energy ≈2.95 eV. UV-Assisted CV measurements describe the distribution of states at the GaN/Al2O3 interface. The described methodology provides an understanding and assessment of trapping mechanisms in vertical GaN transistors
Exploration of Gate Trench Module for Vertical GaN devices
The aim of this work is to present the optimization of the gate trench module
for use in vertical GaN devices in terms of cleaning process of the etched
surface of the gate trench, thickness of gate dielectric and magnesium
concentration of the p-GaN layer. The analysis was carried out by comparing the
main DC parameters of devices that differ in surface cleaning process of the
gate trench, gate dielectric thickness, and body layer doping. . On the basis
of experimental results, we report that: (i) a good cleaning process of the
etched GaN surface of the gate trench is a key factor to enhance the device
performance, (ii) a gate dielectric >35-nm SiO2 results in a narrow
distribution for DC characteristics, (iii) lowering the p-doping in the body
layer improves the ON-resistance (RON). Gate capacitance measurements are
performed to further confirm the results. Hypotheses on dielectric
trapping/detrapping mechanisms under positive and negative gate bias are
reported.Comment: 5 pages, 10 figures, submitted to Microelectronics Reliability
(Special Issue: 31st European Symposium on Reliability of Electron Devices,
Failure Physics and Analysis, ESREF 2020
Changing climate both increases and decreases European river floods
Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results\u2014arising from the most complete database of European flooding so far\u2014suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management
Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling
Sustainability of small and medium sized enterprises (SMEs) is significant as SMEs contribute to GDP substantially in every economy. This research develops an innovative sustainable supply chain performance measurement model for SMEs. Prior researches predominantly use balanced score card (BSC) approach that presume causal relationship of criteria and Data Envelopment Analysis (DEA), which derive efficiency of units from a few input and output criteria. While DEA is effective for policymakers, BSC is more suitable for individual SME. The proposed method that uses structural equation modeling (SEM) approach to derive the relationship of criteria and criteria weights formulates regression-type models for a specific region as well as for specific SME. The SEM-based supply chain sustainability performance measurement model is beneficial to policymakers as they can determine means for improvement at a regional level. The proposed method could also facilitate managers/owners of individual SMEs with measures for improving their supply chain sustainability performance. The method has been applied to three varied geographical locations in the UK, France and India in order to demonstrate its effectiveness
Changing climate both increases and decreases European river floods
Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results—arising from the most complete database of European flooding so far—suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management
- …