863 research outputs found

    Noise in neurons is message-dependent

    Full text link
    Neuronal responses are conspicuously variable. We focus on one particular aspect of that variability: the precision of action potential timing. We show that for common models of noisy spike generation, elementary considerations imply that such variability is a function of the input, and can be made arbitrarily large or small by a suitable choice of inputs. Our considerations are expected to extend to virtually any mechanism of spike generation, and we illustrate them with data from the visual pathway. Thus, a simplification usually made in the application of information theory to neural processing is violated: noise {\sl is not independent of the message}. However, we also show the existence of {\sl error-correcting} topologies, which can achieve better timing reliability than their components.Comment: 6 pages,6 figures. Proceedings of the National Academy of Sciences (in press

    Towards reviving post-Olympic Athens as a cultural destination

    Get PDF
    This paper examines the effects of global change on the status and qualities of the Greek national capital, Athens, focusing on how they affect the development of cultural tourism in the city. Although Athens constituted one of the most significant destinations for Greek tourism in the past, in recent years it started to weaken. Athens is characterised by a series of problems, among them are the degradation of its environment and quality of life and traffic congestion. However, in terms of tourism development, the Olympic Games helped in re-imaging the city and upgrading its infrastructure. This study based on semi-structured interviews with top officials reveals how global change has affected Athens’ socio-cultural/economic status, identity and image. Despite the tourism policy/planning responses to global changes, Athens’ tourism continues to decline leaving unexplored potential such as its rich cultural heritage, new multicultural identity and the New Acropolis Museum. The paper suggests that cultural elements of capital cities must be multidimensional including a variety of attractions and amenities. The use of cultural heritage assets needs to be in line with global developments in order for cities to effectively leverage heritage for cultural tourism

    Numerical Solution of Differential Equations by the Parker-Sochacki Method

    Get PDF
    A tutorial is presented which demonstrates the theory and usage of the Parker-Sochacki method of numerically solving systems of differential equations. Solutions are demonstrated for the case of projectile motion in air, and for the classical Newtonian N-body problem with mutual gravitational attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a university web site, but has now been cited and praised in one or more refereed journals. I am therefore submitting it to the Cornell arXiv so that it may be read in response to its citations. See "Spiking neural network simulation: numerical integration with the Parker-Sochacki method:" J. Comput Neurosci, Robert D. Stewart & Wyeth Bair and http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378

    Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes

    Get PDF
    Aims/hypothesis This study aimed to examine the relationship between average glucose levels, assessed by continuous glucose monitoring (CGM), and HbA1c levels in pregnant women with diabetes to determine whether calculations of standard estimated average glucose (eAG) levels from HbA1c measurements are applicable to pregnant women with diabetes. Methods CGM data from 117 pregnant women (89 women with type 1 diabetes; 28 women with type 2 diabetes) were analysed. Average glucose levels were calculated from 5–7 day CGM profiles (mean 1275 glucose values per profile) and paired with a corresponding (±1 week) HbA1c measure. In total, 688 average glucose–HbA1c pairs were obtained across pregnancy (mean six pairs per participant). Average glucose level was used as the dependent variable in a regression model. Covariates were gestational week, study centre and HbA1c. Results There was a strong association between HbA1c and average glucose values in pregnancy (coefficient 0.67 [95% CI 0.57, 0.78]), i.e. a 1% (11 mmol/mol) difference in HbA1c corresponded to a 0.67 mmol/l difference in average glucose. The random effects model that included gestational week as a curvilinear (quadratic) covariate fitted best, allowing calculation of a pregnancy-specific eAG (PeAG). This showed that an HbA1c of 8.0% (64 mmol/mol) gave a PeAG of 7.4–7.7 mmol/l (depending on gestational week), compared with a standard eAG of 10.2 mmol/l. The PeAG associated with maintaining an HbA1c level of 6.0% (42 mmol/mol) during pregnancy was between 6.4 and 6.7 mmol/l, depending on gestational week. Conclusions/interpretation The HbA1c–average glucose relationship is altered by pregnancy. Routinely generated standard eAG values do not account for this difference between pregnant and non-pregnant individuals and, thus, should not be used during pregnancy. Instead, the PeAG values deduced in the current study are recommended for antenatal clinical care

    The prevalence of giant cell arteritis and polymyalgia rheumatica in a UK primary care population

    Get PDF
    Background: To update community-based prevalence values for Polymyalgia Rheumatic (PMR) and Giant Cell Arteritis (GCA) using case record review supplemented by population survey and subsequent clinical review. Methods: Clinical data were obtained from case records of a large primary care practice in Norfolk, UK and reviewed for diagnoses of GCA and PMR. In addition postal survey was carried out to capture potentially undiagnosed cases within the practice population. Those screening positive for potential diagnoses of GCA and PMR were invited for clinical review. A cumulative prevalence estimate was subsequently calculated on those diagnosed within the GP practice and subsequently on those fulfilling the various published classification criteria sets. The date of the database lock and mail merge was March 2013. Results: Through detailed systematic review of 5,159 GP case records, 21 patients had a recorded diagnosis of GCA and 117 had PMR . No new cases were identified among 2,227 completed questionnaires returned from the population survey of a sample of 4,728. The resulting cumulative prevalence estimate in those aged ≥55 years meeting the ACR classification criteria set for GCA was 0.25% (95% CI 0.11% to 0.39%) and for five published criteria sets for PMR ranged from 0.91% to 1.53% (95% CI ranges 0.65%, 1.87%). The prevalence of both conditions was higher in women than in men and in older age groups. Conclusion: This study provides the first UK prevalence estimate of GCA and PMR in over 30 years and is the first to apply classification criteria sets

    Opposing Roles of Membrane and Soluble Forms of the Receptor for Advanced Glycation End Products in Primary Respiratory Syncytial Virus Infection

    Get PDF
    Respiratory syncytial virus (RSV), a common respiratory pathogen in infants and the older population, causes pulmonary inflammation and airway occlusion that leads to impairment of lung function. Here, we have established a role for receptor for advanced glycation end products (RAGE) in RSV infection. RAGE-deficient (ager−/−) mice were protected from RSV-induced weight loss and inflammation. This protection correlated with an early increase in type I interferons, later decreases in proinflammatory cytokines, and a reduction in viral load. To assess the contribution of soluble RAGE (sRAGE) to RSV-induced disease, wild-type and ager−/− mice were given doses of sRAGE following RSV infection. Of interest, sRAGE treatment prevented RSV-induced weight loss and neutrophilic inflammation to a degree similar to that observed in ager−/− mice. Our work further elucidates the roles of RAGE in the pathogenesis of respiratory infections and highlights the opposing roles of membrane and sRAGE in modulating the host response to RSV infection

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Dendritic Spikes Amplify the Synaptic Signal to Enhance Detection of Motion in a Simulation of the Direction-Selective Ganglion Cell

    Get PDF
    The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry

    Effective Stimuli for Constructing Reliable Neuron Models

    Get PDF
    The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose
    corecore