128 research outputs found

    Radial and circumferential flow surveys at the inlet and exit of the Space Shuttle Main Engine High Pressure Fuel Turbine Model

    Get PDF
    The main objective of this test was to obtain detailed radial and circumferential flow surveys at the inlet and exit of the SSME High Pressure Fuel Turbine model using three-hole cobra probes, hot-film probes, and a laser velocimeter. The test was designed to meet several objectives. First, the techniques for making laser velocimeter, hot-film probe, and cobra probe measurements in turbine flows were developed and demonstrated. The ability to use the cobra probes to obtain static pressure and, therefore, velocity had to be verified; insertion techniques had to be established for the fragile hot-film probes; and a seeding method had to be established for the laser velocimetry. Once the measurement techniques were established, turbine inlet and exit velocity profiles, temperature profiles, pressure profiles, turbulence intensities, and boundary layer thicknesses were measured at the turbine design point. The blockage effect due to the model inlet and exit total pressure and total temperature rakes on the turbine performance was also studied. A small range of off-design points were run to obtain the profiles and to verify the rake blockage effects off-design. Finally, a range of different Reynolds numbers were run to study the effect of Reynolds number on the various measurements

    Effect of pre-cardiac and adult stages of Dirofilaria immitis in pulmonary disease of cats: CBC, bronchial lavage cytology, serology, radiographs, CT images, bronchial reactivity, and histopathology

    Get PDF
    AbstractA controlled, blind study was conducted to define the initial inflammatory response and lung damage associated with the death of precardiac stages of Dirofilaria immitis in cats as compared to adult heartworm infections and normal cats. Three groups of six cats each were used: UU: uninfected untreated controls; PreS I: infected with 100 D. immitis L3 by subcutaneous injection and treated topically with selamectin 32 and 2 days pre-infection and once monthly for 8 months); IU: infected with 100 D. immitis L3 and left untreated. Peripheral blood, serum, bronchial lavage, and thoracic radiographic images were collected from all cats on Days 0, 70, 110, 168, and 240. CT images were acquired on Days 0, 110, and 240. Cats were euthanized, and necropsies were conducted on Day 240 to determine the presence of heartworms. Bronchial rings were collected for in vitro reactivity. Lung, heart, brain, kidney, and liver tissues were collected for histopathology. Results were compared for changes within each group. Pearson and Spearman correlations were performed for association between histologic, radiographic, serologic, hematologic and bronchoalveolar lavage (BAL) results. Infected cats treated with selamectin did not develop radiographically evident changes throughout the study, were heartworm antibody negative, and were free of adult heartworms and worm fragments at necropsy. Histologic lung scores and CT analysis were not significantly different between PreS I cats and UU controls. Subtle alveolar myofibrosis was noted in isolated areas of several PreS I cats and an eosinophilic BAL cytology was noted on Days 75 and 120. Bronchial ring reactivity was blunted in IU cats but was normal in PreS I and UU cats. The IU cats became antibody positive, and five cats developed adult heartworms. All cats with heartworms were antigen positive at one time point; but one cat was antibody positive, antigen negative, with viable adult females at necropsy. The CT revealed early involvement of all pulmonary arteries and a random pattern of parenchymal disease with severe lesions immediately adjacent to normal areas. Analysis of CT 3D reconstruction and Hounsfield units demonstrated lung disease consistent with restrictive pulmonary fibrosis with an interstitial infiltrate, absence of air trapping, and decrease in total lung volume in Group IU as compared to Groups UU and PreS I. The clinical implications of this study are that cats pretreated with selamectin 1 month before D. immitis L3 infection did not become serologically positive and did not develop pulmonary arterial hypertrophy and myofibrosis

    Human Adenovirus Type 36 Enhances Glucose Uptake in Diabetic and Nondiabetic Human Skeletal Muscle Cells Independent of Insulin Signaling

    Get PDF
    OBJECTIVE—Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials

    Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet

    Get PDF
    Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors’ opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet

    Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes

    Get PDF
    Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression

    The nuclear envelope protein, LAP1B, is a novel protein phosphatase 1 substrate

    Get PDF
    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.publishe

    Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p

    α-Synuclein Genetic Variants Predict Faster Motor Symptom Progression in Idiopathic Parkinson Disease

    Get PDF
    Currently, there are no reported genetic predictors of motor symptom progression in Parkinson’s disease (PD). In familial PD, disease severity is associated with higher α-synuclein (SNCA) expression levels, and in postmortem studies expression varies with SNCA genetic variants. Furthermore, SNCA is a well-known risk factor for PD occurrence. We recruited Parkinson’s patients from the communities of three central California counties to investigate the influence of SNCA genetic variants on motor symptom progression in idiopathic PD. We repeatedly assessed this cohort of patients over an average of 5.1 years for motor symptom changes employing the Unified Parkinson’s Disease Rating Scale (UPDRS). Of 363 population-based incident PD cases diagnosed less than 3 years from baseline assessment, 242 cases were successfully re-contacted and 233 were re-examined at least once. Of subjects lost to follow-up, 69% were due to death. Adjusting for covariates, risk of faster decline of motor function as measured by annual increase in motor UPDRS exam score was increased 4-fold in carriers of the REP1 263bp promoter variant (OR 4.03, 95%CI:1.57–10.4). Our data also suggest a contribution to increased risk by the G-allele for rs356165 (OR 1.66; 95%CI:0.96–2.88), and we observed a strong trend across categories when both genetic variants were considered (p for trend  = 0.002). Our population-based study has demonstrated that SNCA variants are strong predictors of faster motor decline in idiopathic PD. SNCA may be a promising target for therapies and may help identify patients who will benefit most from early interventions. This is the first study to link SNCA to motor symptom decline in a longitudinal progression study

    Temporal order of clinical and biomarker changes in familial frontotemporal dementia

    Get PDF
    Data availability: The datasets analyzed for the current study reflect collaborative efforts of two research consortia: ALLFTD and GENFI. Each consortium provides clinical data access based on established policies for data use: processes for request are available for review at allftd.org/data for ALLFTD data and by emailing [email protected]. Certain data elements from both consortia (for example raw MRI images) may be restricted due to the potential for identifiability in the context of the sensitive nature of the genetic data. The deidentified combined dataset will be available for request through the FTD Prevention Initiative in 2023 (https://www.thefpi.org/).Code availability: Custom R code is available at https://doi.org/10.5281/zenodo.6687486.Copyright © The Author(s). Unlike familial Alzheimer’s disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.Data collection and dissemination of the data presented in this paper were supported by the ALLFTD Consortium (U19: AG063911, funded by the National Institute on Aging and the National Institute of Neurological Diseases and Stroke) and the former ARTFL and LEFFTDS Consortia (ARTFL: U54 NS092089, funded by the National Institute of Neurological Diseases and Stroke and National Center for Advancing Translational Sciences; LEFFTDS: U01 AG045390, funded by the National Institute on Aging and the National Institute of Neurological Diseases and Stroke). The manuscript was reviewed by the ALLFTD Executive Committee for scientific content. The authors acknowledge the invaluable contributions of the study participants and families as well as the assistance of the support staffs at each of the participating sites. This work is also supported by the Association for Frontotemporal Degeneration (including the FTD Biomarkers Initiative), the Bluefield Project to Cure FTD, Larry L. Hillblom Foundation (2018-A-025-FEL (A.M.S.)), the National Institutes of Health (AG038791 (A.L.B.), AG032306 (H.J.R.), AG016976 (W.K.), AG062677 (Ron C. Peterson), AG019724 (B.L.M.), AG058233 (Suzee E. Lee), AG072122 (Walter Kukull), P30 AG062422 (B.L.M.), K12 HD001459 (N.G.), K23AG061253 (A.M.S.), AG062422 (RCP), K24AG045333 (H.J.R.)) and the Rainwater Charitable Foundation. Samples from the National Centralized Repository for Alzheimer Disease and Related Dementias (NCRAD), which receives government support under a cooperative agreement grant (U24 AG021886 (T.F.)) awarded by the National Institute on Aging (NIA), were used in this study. This work was also supported by Medical Research Council UK GENFI grant MR/M023664/1 (J.D.R.), the Bluefield Project, the National Institute for Health Research including awards to Cambridge and UCL Biomedical Research Centres and a JPND GENFI-PROX grant (2019–02248). Several authors of this publication are members of the European Reference Network for Rare Neurologic Diseases, project 739510. J.D.R. and L.L.R. are also supported by the National Institute for Health and Care Research (NIHR) UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre Clinical Research Facility and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. J.D.R. is also supported by the Miriam Marks Brain Research UK Senior Fellowship and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). M.B. is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). RC and C.G. are supported by a Frontotemporal Dementia Research Studentships in Memory of David Blechner funded through The National Brain Appeal (RCN 290173). J.B.R. is supported by NIHR Cambridge Biomedical Research Centre (BRC-1215-20014; the views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care), the Wellcome Trust (220258), the Cambridge Centre for Parkinson-plus and the Medical Research Council (SUAG/092 G116768); I.L.B. is supported by ANR-PRTS PREV-DemAls, PHRC PREDICT-PGRN, and several authors of this publication are members of the European Reference Network for Rare Neurological Diseases (project 739510). J.L. is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy – ID 390857198). R.S.-V. was funded at the Hospital Clinic de Barcelona by Instituto de Salud Carlos III, Spain (grant code PI20/00448 to RSV) and Fundació Marató TV3, Spain (grant code 20143810 to R.S.-V.). M.M. was, in part, funded by the UK Medical Research Council, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, by Canadian Institutes of Health Research operating grants (MOP- 371851 and PJT-175242) and by funding from the Weston Brain Institute. R.L. is supported by the Canadian Institutes of Health Research and the Chaire de Recherche sur les Aphasies Primaires Progressives Fondation Famille Lemaire. C.G. is supported by the Swedish Frontotemporal Dementia Initiative Schörling Foundation, Swedish Research Council, JPND Prefrontals, 2015–02926,2018–02754, Swedish Alzheimer Foundation, Swedish Brain Foundation, Karolinska Institutet Doctoral Funding, KI Strat-Neuro, Swedish Dementia Foundation, and Stockholm County Council ALF/Region Stockholm. J.L. is supported by Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (German Research Foundation, EXC 2145 Synergy 390857198). The Dementia Research Centre is supported by Alzheimer’s Research UK, Alzheimer’s Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the National Institute for Health Research UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre Clinical Research Facility and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK
    corecore