3,696 research outputs found

    Two heads better than one?: building a cross-phase school of the future

    Get PDF

    Association of Cyclooxygenase-2 Expression With Endoplasmic Reticulum Stress and Autophagy in Triple-Negative Breast Cancer

    Get PDF
    Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p \u3c 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p \u3c 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer

    The Synthesis of Chemically Well-defined and Biocompatible Oligopyrroles for Tissue Engineering Applications

    No full text
    The studies described in this Thesis involve the development of syntheses of a wide range of chemically well-defined oligopyrroles for tissue engineering applications. In particular, the outcomes of a detailed investigation into the preparation of certain types of such oligopyrroles are presented using Suzuki-Miyaura cross-coupling reactions as a means for linking pyrrole-based building blocks

    Evaluation of a phenology-dependent response method for estimating leaf area index of rice across cllimate gradients

    Get PDF
    Accurate estimate of the seasonal leaf area index (LAI) in croplands is required for understanding not only intra- and inter-annual crop development, but also crop management. Lack of consideration in different growth phases in the relationship between LAI and vegetation indices (VI) often results in unsatisfactory estimation in the seasonal course of LAI. In this study, we partitioned the growing season into two phases separated by maximum VI ( VI max ) and applied the general regression model to the data gained from two phases. As an alternative method to capture the influence of seasonal phenological development on the LAI-VI relationship, we developed a consistent development curve method and compared its performance with the general regression approaches. We used the Normalized Difference VI (NDVI) and the Enhanced VI (EVI) from the rice paddy sites in Asia (South Korea and Japan) and Europe (Spain) to examine its applicability across different climate conditions and management cycles. When the general regression method was used, separating the season into two phases resulted in no better estimation than the estimation obtained with the entire season observation due to an abrupt change in seasonal LAI occurring during the transition between the before and after VI max . The consistent development curve method reproduced the seasonal patterns of LAI from both NDVI and EVI across all sites better than the general regression method. Despite less than satisfactory estimation of a local LAI max , the consistent development curve method demonstrates improvement in estimating the seasonal course of LAI. The method can aid in providing accurate seasonal LAI as an input into ecological process-based models

    Effects of Population Co-location Reduction on Cross-county Transmission Risk of COVID-19 in the United States

    Full text link
    The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing and travel reduction are recognized as essential non-pharmacologic approaches to control the spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new cases with one week of delay. Furthermore, significant segregation is found among different county groups which are categorized based on numbers of cases. The results suggest that within-group co-location probabilities remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.Comment: 12 pages, 7 figure

    Genetic Analyses of the rbcL and psaA Genes From Single Cells Demonstrate a Rhodophyte Origin of the Prey in the Toxic Benthic Dinoflagellate Ostreopsis

    Get PDF
    Phagotrophy of the harmful benthic dinoflagellates of the genus Ostreopsis has long been inferred based on observations of food particles present inside cells, but the prey has not yet been identified. This study aimed to investigate the seasonal dynamics of benthic dinoflagellates Ostreopsis spp. in temperate Korean coastal sites, with special emphasis on their phagotrophy. Further, prey species were identified by extracting the ingested food particles from single Ostreopsis cells and determining their rbcL and psaA gene sequences. High concentration of Ostreopsis cells was observed between June and October at all sites, when the water temperatures were higher than 19°C, exhibiting a marked temporal seasonality. The percentage of Ostreopsis cells containing ingested food particles exhibited large spatial and temporal variations among sampling sites, ranging from undetectable level to 29.5%, and was not always associated with Ostreopsis cell abundance. Phylogenetic analyses performed using both plastid-encoded rbcL and psaA genes revealed that all sequences obtained from the ingested food particles of Ostreopsis cells grouped within the class Florideophyceae, Rhodophyta. Our result clearly demonstrates that Ostreopsis species consume various macroalgae from Rhodophyta, but not protists, which have long been thought to be the potential prey. The results of this study provide a basis for better understanding the mixotrophic behavior and nutritional ecology of the harmful benthic dinoflagellate Ostreopsis species

    Formation of low-mass condensations in the molecular cloud cores via thermal instability

    Full text link
    The low-mass condensations (LMCs) have been observed within the molecular cloud cores. In this research, we investigate the effect of isobaric thermal instability (TI) applied for forming these LMCs. For this purpose, at first we investigate the occurrence of TI in the molecular clouds. Then, for studying the significance of linear isobaric TI, we use a contracting axisymmetric cylindrical core with axial magnetic field. Consideration to cooling and heating mechanisms in the molecular clouds shows that including the heating due to ambipolar diffusion can lead to the occurrence of TI in a time-scale smaller than dynamical time-scale. Application of linear perturbation analysis shows that isobaric TI can take place in outer region of the molecular cloud cores. Furthermore, the results showthat perturbations with wavelengths greater than few astronomical units are protected from destabilization property of thermal conduction, so they can grow to form LMCs. Thus, the results show that the mechanism of TI can be used to explain the formation of LMCs as the progenitors of collapsing proto-stellar entities, brown dwarfs, or proto-planets.Comment: 24 pages, 6 figures, accepted by MNRA
    corecore