899 research outputs found

    On the Usefulness of Modulation Spaces in Deformation Quantization

    Full text link
    We discuss the relevance to deformation quantization of Feichtinger's modulation spaces, especially of the weighted Sjoestrand classes. These function spaces are good classes of symbols of pseudo-differential operators (observables). They have a widespread use in time-frequency analysis and related topics, but are not very well-known in physics. It turns out that they are particularly well adapted to the study of the Moyal star-product and of the star-exponential.Comment: Submitte

    Measuring air–sea gas exchange velocities in a large scale annular wind-wave tank

    Get PDF
    In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weake

    Cosmic-ray Monte Carlo predictions for forward particle production in p-p, p-Pb, and Pb-Pb collisions at the LHC

    Full text link
    We present and compare the predictions of various cosmic-ray Monte Carlo models for the energy (dE/deta) and particle (dN/deta) flows in p-p, p-Pb and Pb-Pb collisions at sqrt(s) = 14, 8.8, and 5.5 TeV respectively, in the range covered by forward LHC detectors like CASTOR or TOTEM (5.2<|eta|<6.6) and ZDC or LHCf (|eta|>8.1 for neutrals).Comment: 5 pages, 5 figs. Poster proceedings Quark-Matter'08, Jaipur. To appear in Indian J. of Phy

    Higher-Derivative Boson Field Theories and Constrained Second-Order Theories

    Get PDF
    As an alternative to the covariant Ostrogradski method, we show that higher-derivative relativistic Lagrangian field theories can be reduced to second differential-order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac's procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the grounds of a simple scalar model and then its applications to generalized electrodynamics and higher-derivative gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theoriesComment: 31 pages, Plain Te

    The orbits of the quadruple star system 88 Tau A from PHASES differential astrometry and radial velocity

    Get PDF
    We have used high precision differential astrometry from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) project and radial velocity measurements covering a time-span of 20 years to determine the orbital parameters of the 88 Tau A system. 88 Tau is a complex hierarchical multiple system comprising a total of six stars; we have studied the brightest 4, consisting of two short-period pairs orbiting each other with an 18-year period. We present the first orbital solution for one of the short-period pairs, and determine the masses of the components and distance to the system to the level of a few percent. In addition, our astrometric measurements allow us to make the first determination of the mutual inclinations of the orbits. We find that the sub-systems are not coplanar.Comment: Corrected Author Ordering; 12 Pages, Accepted for publication in Ap

    Particle production azimuthal asymmetries in a clustering of color sources model

    Full text link
    The collective interactions of many partons in the first stage of the collisions is the usual accepted explanation of the sizable elliptical flow. The clustering of color sources provides a framework of partonic interactions. In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c in both the dependence of v2 transverse momentum and in the shape of the nuclear modified factor on the azimuthal angle for different centralities. We show the predictions at LHC energies for Pb-Pb. In the case of proton-proton collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde

    Duality and Braiding in Twisted Quantum Field Theory

    Full text link
    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte

    Bernoulli potential in type-I and weak type-II superconductors: I. Surface charge

    Full text link
    The electrostatic potential close to the surface of superconductors in the Meissner state is discussed. We show that beside the Bernoulli potential, the quasiparticle screening, and the thermodynamic contribution due to Rickayzen, there is a non-local contribution which is large for both type-I and weak type-II superconductors.Comment: 7 pages, 4 figure

    The quantum state vector in phase space and Gabor's windowed Fourier transform

    Full text link
    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\"odinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and further references adde
    corecore