909 research outputs found
On the Usefulness of Modulation Spaces in Deformation Quantization
We discuss the relevance to deformation quantization of Feichtinger's
modulation spaces, especially of the weighted Sjoestrand classes. These
function spaces are good classes of symbols of pseudo-differential operators
(observables). They have a widespread use in time-frequency analysis and
related topics, but are not very well-known in physics. It turns out that they
are particularly well adapted to the study of the Moyal star-product and of the
star-exponential.Comment: Submitte
Measuring air–sea gas exchange velocities in a large scale annular wind-wave tank
In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weake
Cosmic-ray Monte Carlo predictions for forward particle production in p-p, p-Pb, and Pb-Pb collisions at the LHC
We present and compare the predictions of various cosmic-ray Monte Carlo
models for the energy (dE/deta) and particle (dN/deta) flows in p-p, p-Pb and
Pb-Pb collisions at sqrt(s) = 14, 8.8, and 5.5 TeV respectively, in the range
covered by forward LHC detectors like CASTOR or TOTEM (5.2<|eta|<6.6) and ZDC
or LHCf (|eta|>8.1 for neutrals).Comment: 5 pages, 5 figs. Poster proceedings Quark-Matter'08, Jaipur. To
appear in Indian J. of Phy
Higher-Derivative Boson Field Theories and Constrained Second-Order Theories
As an alternative to the covariant Ostrogradski method, we show that
higher-derivative relativistic Lagrangian field theories can be reduced to
second differential-order by writing them directly as covariant two-derivative
theories involving Lagrange multipliers and new fields. Despite the intrinsic
non-covariance of the Dirac's procedure used to deal with the constraints, the
explicit Lorentz invariance is recovered at the end. We develop this new
setting on the grounds of a simple scalar model and then its applications to
generalized electrodynamics and higher-derivative gravity are worked out. For a
wide class of field theories this method is better suited than Ostrogradski's
for a generalization to 2n-derivative theoriesComment: 31 pages, Plain Te
The orbits of the quadruple star system 88 Tau A from PHASES differential astrometry and radial velocity
We have used high precision differential astrometry from the Palomar
High-precision Astrometric Search for Exoplanet Systems (PHASES) project and
radial velocity measurements covering a time-span of 20 years to determine the
orbital parameters of the 88 Tau A system. 88 Tau is a complex hierarchical
multiple system comprising a total of six stars; we have studied the brightest
4, consisting of two short-period pairs orbiting each other with an 18-year
period. We present the first orbital solution for one of the short-period
pairs, and determine the masses of the components and distance to the system to
the level of a few percent. In addition, our astrometric measurements allow us
to make the first determination of the mutual inclinations of the orbits. We
find that the sub-systems are not coplanar.Comment: Corrected Author Ordering; 12 Pages, Accepted for publication in Ap
Particle production azimuthal asymmetries in a clustering of color sources model
The collective interactions of many partons in the first stage of the
collisions is the usual accepted explanation of the sizable elliptical flow.
The clustering of color sources provides a framework of partonic interactions.
In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c
in both the dependence of v2 transverse momentum and in the shape of the
nuclear modified factor on the azimuthal angle for different centralities. We
show the predictions at LHC energies for Pb-Pb. In the case of proton-proton
collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics
Photon Physics in Heavy Ion Collisions at the LHC
Various pion and photon production mechanisms in high-energy nuclear
collisions at RHIC and LHC are discussed. Comparison with RHIC data is done
whenever possible. The prospect of using electromagnetic probes to characterize
quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow
Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One
figure added in chapter 5 (comparison with PHENIX data). Some figures and
correponding text corrected in chapter 6 (off-chemical equilibrium thermal
photon rates). Some figures modified in chapter 7 (off-chemical equilibrium
photon rates) and comparison with PHENIX data adde
Duality and Braiding in Twisted Quantum Field Theory
We re-examine various issues surrounding the definition of twisted quantum
field theories on flat noncommutative spaces. We propose an interpretation
based on nonlocal commutative field redefinitions which clarifies previously
observed properties such as the formal equivalence of Green's functions in the
noncommutative and commutative theories, causality, and the absence of UV/IR
mixing. We use these fields to define the functional integral formulation of
twisted quantum field theory. We exploit techniques from braided tensor algebra
to argue that the twisted Fock space states of these free fields obey
conventional statistics. We support our claims with a detailed analysis of the
modifications induced in the presence of background magnetic fields, which
induces additional twists by magnetic translation operators and alters the
effective noncommutative geometry seen by the twisted quantum fields. When two
such field theories are dual to one another, we demonstrate that only our
braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte
Bernoulli potential in type-I and weak type-II superconductors: I. Surface charge
The electrostatic potential close to the surface of superconductors in the
Meissner state is discussed. We show that beside the Bernoulli potential, the
quasiparticle screening, and the thermodynamic contribution due to Rickayzen,
there is a non-local contribution which is large for both type-I and weak
type-II superconductors.Comment: 7 pages, 4 figure
The quantum state vector in phase space and Gabor's windowed Fourier transform
Representations of quantum state vectors by complex phase space amplitudes,
complementing the description of the density operator by the Wigner function,
have been defined by applying the Weyl-Wigner transform to dyadic operators,
linear in the state vector and anti-linear in a fixed `window state vector'.
Here aspects of this construction are explored, with emphasis on the connection
with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple
quantum states from various choices of window are presented as illustrations.
Generalized Bargmann representations of the state vector appear as special
cases, associated with Gaussian windows. For every choice of window, amplitudes
lie in a corresponding linear subspace of square-integrable functions on phase
space. A generalized Born interpretation of amplitudes is described, with both
the Wigner function and a generalized Husimi function appearing as quantities
linear in an amplitude and anti-linear in its complex conjugate.
Schr\"odinger's time-dependent and time-independent equations are represented
on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and
further references adde
- …