229 research outputs found

    The Role of Selective Attention in the Positivity Offset: Evidence from Event Related Potentials

    Get PDF
    Some research suggests that positive and negative valence stimuli may be processed differently. For example, negative material may capture and hold attention more readily than equally arousing positive material. This is called the negativity bias, and it has been observed as both behavioural and electroencephalographic (EEG) effects. Consequently, it has been attributed to both automatic and elaborative processes. However, at the lowest levels of arousal, faster reaction times and stronger EEG responses to positive material have been observed. This is called the positivity offset, and the underlying cognitive mechanism is less understood. To study the role of selective attention in the positivity offset, participants completed a negative affective priming (NAP) task modified to dissociate priming for positive and negative words. The task required participants to indicate the valence of a target word, while simultaneously ignoring a distractor. In experiment 1, a behavioural facilitation effect (faster response time) was observed for positive words, in stark contrast to the original NAP task. These results were congruent with a previously reported general categorization advantage for positive material. In experiment 2, participants performed the task while EEG was recorded. In additional to replicating the behavioural results from experiment 1, positive words elicited a larger Late Positive Potential (LPP) component on ignored repetition relative to control trials. Surprisingly, negative words elicited a larger LPP than positive words on control trials. These results suggest that the positivity offset may reflect a greater sensitivity to priming effects due to a more flexible attentional set

    The Effect of Hydroxyethyl Starches (HES 130/0.42 and HES 200/0.5) on Activated Renal Tubular Epithelial Cells

    Full text link
    Background: Acute renal failure is a frequent complication of sepsis. Hydroxyethyl starch (HES) is widely used in the treatment of such patients. However, the effect of HES on renal function during sepsis remains controversial. We established an in vitro model of tumor necrosis factor-alpha (TNF-alpha)-stimulated human proximal tubular epithelial (HK-2) cells to assess the possible effects of HES 130/0.42 and HES 200/0.5 on these activated cells. Methods: HK-2 cells were stimulated with TNF-alpha in the presence or absence of HES 130/0.42 or 200/0.5. After 4, 10, and 18 h of incubation, monocyte chemoattractant protein-1 (MCP-1), a key chemoattractant for neutrophils and macrophages, was measured. In addition, viability and cytotoxicity assays were performed. Results: MCP-1 expression was doubled upon TNF-alpha exposure. In the presence of 2% and 4% HES 200/0.5 in 98% (96%) medium over a stimulation time period of 10 h and 18 h, the MCP-1 concentration was decreased between 26% and 56% (P < 0.05). TNF-alpha stimulation resulted in a significant decrease of viability by 53%-63%, whereas viability decreased by only 32%-40% in coincubation with HES 130/0.42 (P < 0.005) and remained even less affected by TNF-alpha in the presence of HES 200/0.5 (P < 0.001). The TNF-alpha-induced cell death rate was attenuated in the presence of HES 200/0.5 (P < 0.05). Conclusions: This in vitro study shows that both HES products modulate cell injury upon inflammatory stimulation. The effect was more pronounced in the HES 200/0.5 group than for HES 130/0.42, suggesting a possible biological difference between the HES types

    The Seroepidemiology of Haemophilus influenzae Type B Prior to Introduction of an Immunization Programme in Kathmandu, Nepal.

    Get PDF
    Haemophilus influenzae type b (Hib) is now recognized as an important pathogen in Asia. To evaluate disease susceptibility, and as a marker of Hib transmission before routine immunization was introduced in Kathmandu, 71 participants aged 7 months-77 years were recruited and 15 cord blood samples were collected for analysis of anti-polyribosylribitol phosphate antibody levels by enzyme-linked immunosorbent assay. Only 20% of children under 5 years old had levels considered protective (>0.15 µg/ml), rising to 83% of 15-54 year-olds. Prior to introduction of Hib vaccine in Kathmandu, the majority of young children were susceptible to disease

    A proposed unified framework to describe the management of biological invasions

    Get PDF
    Acknowledgements This paper arose from a workshop of the Invasion Dynamics Network (InDyNet) in Berlin in 2018, funded by the Deutsche Forschungsgemeinschaft (DFG) Grant JE 288/8-1, which included a Mercator Fellowship for DLS. Additional support was received through DFG Grants JE 288/9- 1 and JE 288/9-2 to JMJ, the G.E. Hutchinson Chair to DLS and the project ‘‘Capacity Building Neobiota’’ (Austrian Federal Ministry for Sustainability and Tourism) to WR. AN, PP and JP were supported by long-term research development project no. RVO 67985939, project 17-19025S and EXPRO grant 19-28807X (Czech Science Foundation). IJ was supported by the J. E. Purkyneˇ Fellowship of the Czech Academy of Sciences. We also thank the referees for this paper for their critical and constructive comments.Peer reviewedPublisher PD

    Dynamic modeling of the reactive twin-screw co-rotating extrusion process: experimental validation by using inlet glass fibers injection response and application to polymers degassing

    Get PDF
    International audienceIn this paper is described an original dynamic model of a reactive co-rotating twinscrew extrusion (TSE) process operated by the Rhodia company for the Nylon-66 degassing finishing step. In order to validate the model, dynamic experiments have been performed on a small-scale pilot plant. These experiments consist in a temporary injection of glass fibers at the inlet of the extruder after it has reached a given operating point. The outlet glass fibers mass fraction time variation is then measured. This experiment does not lead to the RTD measurement. As a matter of fact, due to the high quantity of glass fibers that is introduced, the behavior of the flow through the extruder is perturbed so that the glass fibers cannot be considered as an inert tracer. The dynamic model that we have published elsewhere (Choulak et al., Ind. Eng. Chem. Res., 2004, 43(23), 7373-7382) is adapted to take into account this nonlinear behavior of the extruder with respect to the glass fibers injection and is favorably compared to experimental results. The description of the degassing operation is also included in the model. The model allows simulations of the complete dynamic behavior of the process. When the steady state is reached, the good position of the degassing vent with respect to the partially and fully filled zones positions can also be checked, thus illustrating the way the model can be used for design purposes

    Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms

    Get PDF
    The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its consequent confinement within the capsid. It is proposed that this pressure helps driving the genome into the host, but other mechanisms also seem to play an important role in ejection. DNA packaging and ejection strategies are obviously dependent on the mechanical properties of the capsid. This review focuses on the mechanical properties of viral capsids in general and the elucidation of the biophysical aspects of genome packaging mechanisms and genome delivery processes of double-stranded DNA bacteriophages in particular

    Activation of 2′ 5′-oligoadenylate synthetase by stem loops at the 5′-end of the West Nile virus genome

    Get PDF
    West Nile virus (WNV) has a positive sense RNA genome with conserved structural elements in the 5′ and 3′ -untranslated regions required for polyprotein production. Antiviral immunity to WNV is partially mediated through the production of a cluster of proteins known as the interferon stimulated genes (ISGs). The 2′ 5′-oligoadenylate synthetases (OAS) are key ISGs that help to amplify the innate immune response. Upon interaction with viral double stranded RNA, OAS enzymes become activated and enable the host cell to restrict viral propagation. Studies have linked mutations in the OAS1 gene to increased susceptibility to WNV infection, highlighting the importance of OAS1 enzyme. Here we report that the region at the 5′-end of the WNV genome comprising both the 5′-UTR and initial coding region is capable of OAS1 activation in vitro. This region contains three RNA stem loops (SLI, SLII, and SLIII) whose relative contribution to OAS1 binding affinity and activation were investigated using electrophoretic mobility shift assays and enzyme kinetics experiments. Stem loop I, comprising nucleotides 1-73, is dispensable for maximum OAS1 activation, as a construct containing only SLII and SLIII was capable of enzymatic activation. Mutations to the RNA binding site of OAS1 confirmed the specificity of the interaction. The purity, monodispersity and homogeneity of the 5′-end (SLI/II/III) and OAS1 were evaluated using dynamic light scattering and analytical ultra-centrifugation. Solution conformations of both the 5′-end RNA of WNV and OAS1 were then elucidated using small-angle x-ray scattering. In the context of purified components in vitro, these data demonstrate the recognition of conserved secondary structural elements of the WNV genome by a member of the interferon-mediated innate immune response

    Comparative Economic Evaluation of Haemophilus influenzae Type b Vaccination in Belarus and Uzbekistan

    Get PDF
    BACKGROUND: Hib vaccine has gradually been introduced into more and more countries during the past two decades, partly due to GAVI Alliance support to low-income countries. However, since Hib disease burden is difficult to establish in settings with limited diagnostic capacities and since the vaccine continues to be relatively expensive, some Governments remain doubtful about its value leading to concerns about financial sustainability. Similarly, several middle-income countries have not introduced the vaccine. The aim of this study is to estimate and compare the cost-effectiveness of Hib vaccination in a country relying on self-financing (Belarus) and a country eligible for GAVI Alliance support (Uzbekistan). METHODS AND FINDINGS: A decision analytic model was used to estimate morbidity and mortality from Hib meningitis, Hib pneumonia and other types of Hib disease with and without the vaccine. Treatment costs were attached to each disease event. Data on disease incidence, case fatality ratios and costs were primarily determined from national sources. For the Belarus 2009 birth cohort, Hib vaccine is estimated to prevent 467 invasive disease cases, 4 cases of meningitis sequelae, and 3 deaths, while in Uzbekistan 3,069 invasive cases, 34 sequelae cases and 341 deaths are prevented. Estimated costs per discounted DALY averted are US9,323inBelarusandUS 9,323 in Belarus and US 267 in Uzbekistan. CONCLUSION: The primary reason why the cost-effectiveness values are more favourable in Uzbekistan than in Belarus is that relatively more deaths are averted in Uzbekistan due to higher baseline mortality burden. Two other explanations are that the vaccine price is lower in Uzbekistan and that Uzbekistan uses a three dose schedule compared to four doses in Belarus. However, when seen in the context of the relative ability to pay for public health, the vaccine can be considered cost-effective in both countries
    corecore