103 research outputs found

    The evolution of resistance through costly acquired immunity

    Get PDF
    We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter

    Coevolution of parasite virulence and host mating strategies

    Get PDF
    Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution

    Spatial heterogeneity in ecology

    Get PDF
    This project predominantly investigated the implications of spatial heterogeneity in the ecological processes of competition and infection. Empirical analysis of spatial heterogeneity was carried out using the lepidopteran species Plodia interpunctella. Using differently viscous food media, it was possible to alter the movement rate of larvae. Soft Foods allow the movement rate of larvae to be high, so that individuals can disperse through the environment and avoid physical encounters with conspecifics. Harder foods lower the movement rate of larvae, restricting the ability of individuals to disperse away from birth sites and avoid conspecifics encounters. Increasing food viscosity and lowering movement rate therefore has the effect of making uniform distributed larval populations more aggregated and patchy. Different spatial structures changed the nature of intraspecific competition, with patchy populations characterised by individuals experiencing lower growth rates and greater mortality because of the reduced food and space available within densely packed aggregations. At the population scale, the increased competition for food individuals experience in aggregations emerges as longer generational cycles and reduced population densities. Aggregating individuals also altered the outcome of interspecific competition between Plodia and Ephestia cautella. In food media that allowed high movement rates, Plodia had a greater survival rate than Ephestia because the larger movement rate of Plodia allowed it to more effectively avoid intraspecific competition. Also the faster growth rate, and so larger size, of Plodia allowed it to dominate interspecific encounters by either predating or interfering with the feeding of Ephestia. In food that restricts movement, the resulting aggregations cause Plodia to experience more intraspecific encounters relative to interspecific, reducing its competitive advantage and levelling the survival of the two species. Spatial structure also affected the dynamics of a Plodia-granulosis virus interaction and the evolution of virus infectivity. Larval aggregation forced transmission to become limited to within host patches, making the overall prevalence of the virus low. However potentially high rates of cannibalism and multiple infections within overcrowded host aggregations caused virus-induced mortality to be high, as indicated by the low host population density when virus is presented. Also aggregated host populations cause the evolution of lower virus infectivity, where less infective virus strains maintain more susceptible hosts within the aggregation and so possess a greater transmission rate. The pattern of variation in resistance of Plodia interpunctella towards its granulosis virus was found using two forms of graphical analysis. There was a bimodal pattern of variation, with most individuals exhibiting either low or high levels of resistance. This pattern was related to a resistance mechanism that is decreasingly costly to host fitness.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Life history effects of prey choice by copepods: implications for biocontrol of vector mosquitoes

    Get PDF
    Macrocyclops distinctus, Megacyclops viridis, and Mesocyclops pehpeiensis, which are common in rice fields during the summer season in Nagasaki, Japan, showed variable potentialities as biological control agents of larval Aedes albopictus, Culex tritaeniorhynchus, and Anopheles minimus in the laboratory. Macrocyclops distinctus and M. viridis, the largest copepod species, had fewer eggs within an egg clutch in nature than the smallest species, M. pehpeiensis, which also had a lower developmental time for sexual maturation (based on the appearance of the 1st clutch). Longevity as well as fecundity were influenced by nutritional conditions and varied significantly between the species. All species had shorter life spans when starved, but resistance to starvation was more pronounced in the larger species. All the species had lower clutch production when starved. Also, although the frequency of clutch production was high in M. pehpeiensis (M. pehpeiensis produced a clutch every 2 days, whereas M. distinctus and M. viridis took on average almost 3 days), total clutch production was far higher in the larger species. The copepods fed readily on mosquito larvae, with M. distinctus and M. viridis killing fewer Ae. albopictus than M. pehpeiensis, which, however, killed fewer An. minimus. These copepods exhibited a similar and limited predation against Cx. tritaeniorhynchus. Results of our study support the contention that these copepods have the potential to be used as biological control agents of immature mosquitoes. Also, our results give useful information on colony maintenance and field introduction. In particular, releasing copepods with Paramecium as food could increase their survival in the habitat of the targeted pest

    Indoor-Breeding of Aedes albopictus in Northern Peninsular Malaysia and Its Potential Epidemiological Implications

    Get PDF
    Background: The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities. Methodology/Principal Findings: In a series of experiments involving outdoors and indoors breeding populations, we found that Ae. albopictus lives longer in the indoor environment. We also observed increased nighttime biting activity and lifetime fecundity in indoor/domestic adapted females, although they were similar to recently colonized females in body size. Conclusion/Significance: Taken together these data suggest that accommodation of Ae. albopictus to indoor/domestic environment may increase its lifespan, blood feeding success, nuisance and thus vectorial capacity (both in terms of increased vector-host contacts and vector population density). These changes in the breeding behavior of Ae. albopictus,

    SARS‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells

    Get PDF
    The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis

    Epistatic Interactions Alter Dynamics of Multilocus Gene-for-Gene Coevolution

    Get PDF
    Fitness costs associated with resistance or virulence genes are thought to play a key role in determining the dynamics of gene-for-gene (GFG) host-parasite coevolution. However, the nature of interactions between fitness effects of multiple resistance or virulence genes (epistasis) has received less attention. To examine effects of the functional form of epistasis on the dynamics of GFG host-parasite coevolution we modified a classic multilocus GFG model framework. We show that the type of epistasis between virulence genes largely determines coevolutionary dynamics, and that coevolutionary fluctuations are more likely with acceleratingly costly (negative) than with linear or deceleratingly costly (positive) epistasis. Our results demonstrate that the specific forms of interaction between multiple resistance or virulence genes are a crucial determinant of host-parasite coevolutionary dynamics
    corecore