275 research outputs found

    Role of breast regression protein-39/YKL-40 in asthma and allergic responses

    Get PDF
    BRP-39 and its human homolog YKL-40 have been regarded as a prototype of chitinase-like proteins (CLP) in mammals. Exaggerated levels of YKL-40 protein and/or mRNA have been noted in a number of diseases characterized by inflammation, tissue remodeling, and aberrant cell growth. Asthma is an inflammatory disease characterized by airway hyperresponsiveness and airway remodeling. Recently, the novel regulatory role of BRP-39/YKL-40 in the pathogenesis of asthma has been demonstrated both in human studies and allergic animal models. The levels of YKL-40 are increased in the circulation and lungs from asthmatics where they correlate with disease severity, and CHI3L1 polymorphisms correlate with serum YKL-40 levels, asthma and abnormal lung function. Animal studies using BRP-39 null mutant mice demonstrated that BRP-39 was required for optimal allergen sensitization and Th2 inflammation. These studies suggest the potential use of BRP-39 as a biomarker as well as a therapeutic target for asthma and other allergic diseases. Here, we present an overview of chitin/chitinase biology and summarize recent findings on the role of BRP-39 in the pathogenesis of asthma and allergic responses

    Improved Tropical Forest Management for Carbon Retention

    Get PDF
    Using reduced-impact timber-harvesting practices in legally logged tropical forests would reduce global carbon emissions by 0.16 Gt/year at a modest cost and with little risk of "leakage" (increased carbon emissions elsewhere)

    Chitin, Chitinases and Chitinase-like Proteins in Allergic Inflammation and Tissue Remodeling

    Get PDF
    Chitin, the second most abundant polysaccharide in nature after cellulose, consist exoskeleton of lower organisms such as fungi, crustaceans and insects except mammals. Recently, several studies evaluated immunologic effects of chitin in vivo and in vitro and revealed new aspects of chitin regulation of innate and adaptive immune responses. It has been shown that exogenous chitin activates macrophages and other innate immune cells and also modulates adaptive type 2 allergic inflammation. These studies further demonstrate that chitin stimulate macrophages by interacting with different cell surface receptors such as macrophage mannose receptor, toll-like receptor 2 (TLR-2), C-type lectin receptor Dectin-1, and leukotriene B4 recepptor (BLT1). On the other hand, a number of chitinase or chitinase-like proteins (C/CLP) are ubiquitously expressed in the airways and intestinal tracts from insects to mammals. In general, these chitinase family proteins confer protective functions to the host against exogenous chitin-containing pathogens. However, substantial body of recent studies also set light on new roles of C/CLP in the development and progression of allergic inflammation and tissue remodeling. In this review, recent findings on the role of chitin and C/CLP in allergic inflammation and tissue remodeling will be highlighted and controversial and unsolved issues in this field of studies will be discussed

    Tachykinin receptors antagonism for asthma: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tachykinins substance P, neurokinin A and neurokinin B seem to account for asthma pathophysiology by mediating neurogenic inflammation and several aspects of lung mechanics. These neuropeptides act mainly by their receptors NK1, NK2 and NK3, respectively which may be targets for new asthma therapy.</p> <p>Methods</p> <p>This review systematically examines randomized controlled trials evaluating the effect of tachykinins receptors antagonism on asthma. Symptoms, airway inflammation, lung function and airway inflammation were considered as outcomes. We searched the Cochrane Airways Group Specialized Register of Asthma Trials, Cochrane Database of Systematic Reviews, MEDLINE/PubMed and EMBASE. The search is as current as June 2010. Quality rating of included studies followed the Cochrane Collaboration and GRADE Profiler approaches. However, data were not pooled together due to different measures among the studies.</p> <p>Results</p> <p>Our systematic review showed the potential of NK receptor antagonist to decrease airway responsiveness and to improve lung function. However, effects on airway inflammation and asthma symptoms were poorly or not described.</p> <p>Conclusion</p> <p>The limited available evidence suggests that tachykinin receptors antagonists may decrease airway responsiveness and improve lung function in patients with asthma. Further large randomized trials are still required.</p

    Different Domains of the RNA Polymerase of Infectious Bursal Disease Virus Contribute to Virulence

    Get PDF
    BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses

    Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish

    Get PDF
    In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.Animal science

    Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish

    Get PDF
    β-glucosidases (GBA1 [glucocerebrosidase], GBA2, and GBA3) are ubiquitous, essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease (GD), a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 and Gba2 zebrafish knockouts (gba1-/- and gba2-/-, respectively) using CRISPR/Cas9, modulated glucosidases genetically and pharmacologically, studied GlcCer metabolism in individual larvae, and explored the feasibility of pharmacologic or genetic interventions. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1-/- larvae (0.09 pmol/fish) but did not increase more in gba1-/-:gba2-/- larvae. GlcCer was comparable in gba1-/- and wild-type (WT) larvae but increased in gba2-/- and gba1-/-:gba2-/- larvae. Independent of Gba1 status, GlcChol was low in all gba2-/- larvae (0.05 vs. 0.18. pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of glucosylceramide synthase in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of glucosylceramide synthase and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish  larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency. Animal science

    Supporting dynamic change detection: using the right tool for the task

    Get PDF
    Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness—the failure to notice visual changes—is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one’s own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142–153, 2011; J. Exp. Psychol. Appl. 19:403–419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition
    corecore