46 research outputs found

    Stabilization of Empty Fruit Bunch derived Bio-oil using Solvents

    Get PDF
    The intention of this research was to select the ideal condition for accelerated aging of bio-oil and the consequences of additive in stabilizing the bio-oil. The bio-oil was produced from the catalytic pyrolysis of empty fruit bunch. The optimum reaction conditions applied to obtain the utmost bio-oil yield were 5 wt% of H-Y catalyst at reaction temperature of 500 °C and nitrogen flow rate of 100 ml/min. A 10 wt% of solvents including acetone, ethanol, and ethyl acetate were used to study the bio-oil’s stability. All the test samples were subjected to accelerated aging at temperature of 80 °C for 7 days. The properties of samples used as the indicator of aging were viscosity and water content. The effectiveness of solvents increased in the following order: acetone, ethyl acetate, and 95 vol% ethanol. Based on the result of Gas Chromatography-Mass Spectrometry (GC-MS), it could impede the chain of polymerization by converting the active units in the oligomer chain to inactive units. The solvent reacted to form low molecular weight products which resulted in lower viscosity and lessen the water content in bio-oil. Addition of 95 vol% ethanol also inhibited phase separation

    Application of Pinhole Plasma Jet Activated Water against Escherichia coli, Colletotrichum gloeosporioides, and Decontamination of Pesticide Residues on Chili (Capsicum annuum L.)

    Get PDF
    Plasma activated water (PAW) generated from pinhole plasma jet using gas mixtures of argon (Ar) and 2% oxygen (O2) was evaluated for pesticide degradation and microorganism decontamination (i.e., Escherichia coli and Colletotrichum gloeosporioides) in chili (Capsicum annuum L.). A flow rate of 10 L/min produced the highest concentration of hydrogen peroxide (H2O2) at 369 mg/L. Results showed that PAW treatment for 30 min and 60 min effectively degrades carbendazim and chlorpyrifos by about 57% and 54% in solution, respectively. In chili, carbendazim and chlorpyrifos were also decreased, to a major extent, by 80% and 65% after PAW treatment for 30 min and 60 min, respectively. E. coli populations were reduced by 1.18 Log CFU/mL and 2.8 Log CFU/g with PAW treatment for 60 min in suspension and chili, respectively. Moreover, 100% of inhibition of fungal spore germination was achieved with PAW treatment. Additionally, PAW treatment demonstrated significantly higher efficiency (p < 0.05) in controlling Anthracnose in chili by about 83% compared to other treatments

    Stabilization of Empty Fruit Bunch derived Bio-oil using Solvents

    Get PDF
    The intention of this research was to select the ideal condition for accelerated aging of bio-oil and the consequences of additive in stabilizing the bio-oil. The bio-oil was produced from the catalytic pyrolysis of empty fruit bunch. The optimum reaction conditions applied to obtain the utmost bio-oil yield were 5 wt% of H-Y catalyst at reaction temperature of 500 °C and nitrogen flow rate of 100 ml/min. A 10 wt% of solvents including acetone, ethanol, and ethyl acetate were used to study the bio-oil’s stability. All the test samples were subjected to accelerated aging at temperature of 80 °C for 7 days. The properties of samples used as the indicator of aging were viscosity and water content. The effectiveness of solvents increased in the following order: acetone, ethyl acetate, and 95 vol% ethanol. Based on the result of Gas Chromatography-Mass Spectrometry (GC-MS), it could impede the chain of polymerization by converting the active units in the oligomer chain to inactive units. The solvent reacted to form low molecular weight products which resulted in lower viscosity and lessen the water content in bio-oil. Addition of 95 vol% ethanol also inhibited phase separation

    Characterization of PLA-limonene blends for food packaging applications

    Full text link
    Polymers derived from renewable resources are now considered as promising alternatives to traditional petro-polymers as they mitigate current environmental concerns (raw renewable materials/biodegradability). D-limonene can be found in a variety of citrus, indeed is the main component of citrus oils and one of most important contributors to citrus flavor. The incorporation of limonene in PLA matrix was evaluated and quantified by Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS). Transparent films were obtained after the addition of the natural compound. Mechanical properties were evaluated by tensile tests. The effect of limonene on mechanical properties of PLA films was characterized by an increase in the elongation at break and a decrease in the elastic modulus. The fracture surface structure of films was evaluated by scanning electron microscopy (SEM), and homogeneous surfaces were observed in all cases. Barrier properties were reduced due to the increase of the chain mobility produced by the D-limonene. (C) 2013 Elsevier Ltd. All rights reserved.This research was supported by the Ministry of Science and Innovation of Spain (MAT2011-28468-C02-02). Marina P. Arrieta thanks Generalitat Valenciana (Spain) for a Santiago Grisolia Fellowship. Authors thank Professor Alfonso Jimenez from the University of Alicante, for his useful discussions.Arrieta, MP.; López Martínez, J.; Ferrándiz Bou, S.; Peltzer, MA. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing. 32(4):760-768. https://doi.org/10.1016/j.polymertesting.2013.03.016S76076832

    Improvement of Biological Properties of Natural Hemostatic Agent by Plasma Technology

    No full text
    The aim of this study was to evaluate the effect of non-thermal plasma treatment on the biological properties of a natural hemostatic agent. The results show that plasma treatment can enhance the biodegradability property of the hemostatic agent by increasing the degradation rate of the specimen up to 94.26% within 7 days. Furthermore, the plasma-treated specimen also exhibited good biocompatibility based on the cell viability test of the fibroblast cells. The cell growth and cell proliferation on this sample were found to be helpful for the wound healing process. With appropriate degradable and biocompatible properties, this modified agent could be beneficial for better control over bleeding during surgery. Research on the physical and mechanical properties are on to develop novel hemostatic products to match the requirements as far as biomedical applications are concerned

    Effect of Water-Resistant Properties of Kraft Paper (KP) Using Sulfur Hexafluoride (SF<sub>6</sub>) Plasma Coating

    No full text
    Sulfur hexafluoride (SF6) plasma at different pressures, powers, and times was used to treat Kraft paper (KP) to enhance its water resistance. The KP was treated with SF6 plasma from 20–300 mTorr of pressure at powers from 25–75 Watts and treatment times from 1–30 min at 13.56 MHz. The prepared papers were characterized by contact angle measurement and water absorption. The selected optimum condition for the plasma-treated KP was 200 mTorr at 50 Watts for 5 min. Advancement with the change in treatment times (3, 5, and 7 min) on the physical and mechanical properties, water resistance, and morphology of KP with SF6 plasma at 200 mTorr and 50 Watts was evaluated. The changes in the chemical compositions of the plasma-treated papers were analyzed with an XPS analysis. The treatment times of 0, 3, 5, and 7 min revealed fluorine/carbon (F/C) atomic concentration percentages at 0.00/72.70, 40.48/40.97, 40.18/37.95, and 45.72/39.48, respectively. The XPS spectra showed three newly raised peaks at 289.7~289.8, 291.5~291.7, and 293.4~293.6 eV in the 3, 5, and 7 min plasma-treated KPs belonging to the CF, CF2, and CF3 moieties. The 5 min plasma-treated paper promoted a better interaction between the SF6 plasma and the paper yielded by the F atoms. As the treatment time for the treated KPs increased, the contact angle, water absorption time, and Cobb test values increased. However, the thickness and tensile strength did not show remarkable changes. The SEM images revealed that, as the treatment time increased, the surface roughness of the plasma-treated KPs also increased, leading to improved water resistance properties. Overall, the SF6 plasma treatment modified the surface at the nano-layer range, creating super-hydrophobicity surfaces
    corecore