17 research outputs found

    Effects of Temperature on Para rubber (Hevea brasiliensis MÞell. Arg.) Leaf Photosynthesis Rates at Different Ambient CO2 Concentrations

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ•āđˆāļ­āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļ‚āļ­āļ‡āđƒāļšāļĒāļēāļ‡āļžāļēāļĢāļēāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ•āđˆāļēāļ‡āđ† āđ‚āļ”āļĒāļ§āļąāļ”āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ•āđˆāļēāļ‡āđ† āđƒāļ™āļŦāđ‰āļ­āļ‡āļ„āļ§āļšāļ„āļļāļĄāļ­āļļāļ“āļŦāļ āļđāļĄāļī āļāļģāļŦāļ™āļ”āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāđāļŠāļ‡ 1,400 Âĩmol m-2 s-1 āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļŠāļąāļĄāļžāļąāļ—āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡ 50-80 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒ āļ āļēāļĒāđƒāļ•āđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļī 9 āļĢāļ°āļ”āļąāļš āļ„āļ·āļ­ 10, 15, 22, 28, 32, 36, 40, 42 āđāļĨāļ° 45 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļˆāļēāļāļ™āļąāđ‰āļ™āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđƒāļš āđ‚āļ”āļĒāđƒāļŠāđ‰āļŠāļĄāļāļēāļĢ 4th order polynomial equation āđāļĨāļ°āļ›āļĢāļ°āđ€āļĄāļīāļ™āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđƒāļ™āļĢāļ°āļ”āļąāļšāļ•āđˆāļēāļ‡āđ† āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļŠāļĄāļāļēāļĢ 4th order polynomial equation āļ­āļ˜āļīāļšāļēāļĒāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āļ‚āļ­āļ‡āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāđ„āļ”āđ‰āļ”āļĩ āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļ—āļģāđƒāļŦāđ‰āļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ‚āļ­āļ‡āđƒāļšāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđ„āļ› āđ€āļĄāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļˆāļ°āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āđāļĨāļ°āļžāļšāļāļēāļĢāļ•āļ­āļšāļŠāļ™āļ­āļ‡āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ•āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™āļ”āđ‰āļ§āļĒ āđāļĨāļ°āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļ„āđˆāļēāļ­āļąāļ•āļĢāļēāļāļēāļĢāļŠāļąāļ‡āđ€āļ„āļĢāļēāļ°āļŦāđŒāļ”āđ‰āļ§āļĒāđāļŠāļ‡āļŠāļļāļ—āļ˜āļīāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ™āļąāđ‰āļ™āđ† āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™āđ€āļŠāđˆāļ™āđ€āļ”āļĩāļĒāļ§āļāļąāļ™ āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ—āļĩāđˆāļˆāļ°āļ­āļīāđˆāļĄāļ•āļąāļ§āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāļĄāļēāļāļāļ§āđˆāļē 1,200 Âĩmol mol-1 ABSTRACT   This research aimed to study the effects of temperature on Para rubber (Hevea brasiliensis Muell. Arg.) leaf photosynthesis rates at different ambient CO2 concentrations by measuring responses of the leaf net photosynthetic rates to the CO2 concentrations in the air at different temperatures in temperature controlled room.  The measurement was done using photosynthetically active photon flux at  1,400 Âĩmol m-2 s-1, 50 % to 80 %  relative humidity,  and nine temperature levels; (10, 15, 22, 28, 32, 36, 40, 42 and 45 šC). The responses of net photosynthetic rates to leaf temperatures were fitted using the 4th order polynomial equation. Then, the optimum temperatures for the net photosynthetic rate at different CO2 concentration levels were estimated. The result showed that 4th order polynomial equation provided good fit to the responses of the net photosynthetic rates to leaf temperatures. The changes in CO2 concentration influenced the responses. Increased CO2 concentration led to increased net photosynthetic rate and also the responsiveness of net photosynthetic rate to temperature. Finally, optimum temperature increased with CO2 concentration up to approximately 1200 Âĩmol m-2 s-1

    Effect of temperature constraints on photosynthesis of rubber (Hevea brasiliensis)

    Full text link
    The temperature responses of photosynthesis of two rubber clones, RRIM600 and PB260 were determined over a wide range from 10 to 45°C. Leaf photosynthesis measurements were performed at the Agriculture Faculty, Kasetsart University, Thailand and in a growth chamber at French National Institute for Agricultural Research (INRA-PIAF), Clermont-Ferrand, France. Photosynthetic rate of RRIM600 stayed almost constant between 23 to 37°C, and decreased distinctly with increasing temperature from 38 to 45°C. Photosynthetic rate of PB260 increased with increasing temperature from 10°C, and also decreased distinctly by lowering the temperature below 24°C or by increasing it above 36°C. These results indicated the similar shape of temperature response of photosynthesis of two rubber clones. (RÃĐsumÃĐ d'auteur

    Photosynthetic capacity and temperature responses of photosynthesis of rubber trees ( Hevea brasiliensis MÞll. Arg.) acclimate to changes in ambient temperatures

    No full text
    The aim of this study was to assess the temperature response of photosynthesis in rubber trees (Hevea brasiliensis Mull. Arg.) to provide data for process-based growth modeling, and to test whether photosynthetic capacity and temperature response of photosynthesis acclimates to changes in ambient temperature. Net CO2 assimilation rate (A) was measured in rubber saplings grown in a nursery or in growth chambers at 18 and 28A degrees C. The temperature response of A was measured from 9 to 45A degrees C and the data were fitted to an empirical model. Photosynthetic capacity (maximal carboxylation rate, V (cmax), and maximal light driven electron flux, J (max)) of plants acclimated to 18 and 28A degrees C were estimated by fitting a biochemical photosynthesis model to the CO2 response curves (A-C (i) curves) at six temperatures: 15, 22, 28, 32, 36 and 40A degrees C. The optimal temperature for A (T (opt)) was much lower in plants grown at 18A degrees C compared to 28A degrees C and nursery. Net CO2 assimilation rate at optimal temperature (A (opt)), V (cmax) and J (max) at a reference temperature of 25A degrees C (V (cmax25) and J (max25)) as well as activation energy of V (cmax) and J (max) (E (aV) and E (aJ)) decreased in individuals acclimated to 18A degrees C. The optimal temperature for V (cmax) and J (max) could not be clearly defined from our response curves, as they always were above 36A degrees C and not far from 40A degrees C. The ratio J (max25)/V (cmax25) was larger in plants acclimated to 18A degrees C. Less nitrogen was present and photosynthetic nitrogen use efficiency (V (cmax25)/N (a)) was smaller in leaves acclimated to 18A degrees C. These results indicate that rubber saplings acclimated their photosynthetic characteristics in response to growth temperature, and that higher temperatures resulted in an enhanced photosynthetic capacity in the leaves, as well as larger activation energy for photosynthesis
    corecore