35 research outputs found
Inducible viral receptor, A possible concept to induce viral protection in primitive immune animals
A pseudolysogen (PL) is derived from the lysogenic Vibrio harveyi (VH) which is infected with the VHS1 (Vibrio harveyi Siphoviridae-like 1) bacteriophage. The lysogenic Vibrio harveyi undergoes an unequivalent division of the extra-chromosomal VHS1 phage genome and its VH host chromosome and produces a true lysogen (TL) and pseudolysogen (PL). The PL is tolerant to super-infection of VHS1, as is of the true lysogen (TL), but the PL does not contain the VHS1 phage genome while the TL does. However, the PL can become susceptible to VHS1 phage infection if the physiological state of the PL is changed. It is postulated that this is due to a phage receptor molecule which can be inducible to an on-and-off regulation influence by an alternating condition of the bacterial host cell. This characteristic of the PL leads to speculate that this phenomenon can also occur in high organisms with low immunity such as shrimp. This article proposes a hypothesis that the viral receptor molecule on the target cell can play a crucial role in which the invertebrate aquaculture animals can become tolerant to viral infection. A possible mechanism may be that the target cell disrupts the viral receptor molecule to prevent super infection. This concept can explain a mechanism for the prevention of viral infection in invertebrate animals which do not have acquired immunity in response to pathogens. It can guide us to develop a mechanism of immunity to viral infection in low-evolved-immune animals. Also, it can be an additional mechanism that exists in high immune organism, as in human for the prevention of viral infectio
Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase
Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins-HORMAD1 and HORMAD2-in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals
Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation
Skeletal muscle stem cells (MuSCs) are required for regeneration of adult muscle following injury, a response that demands activation of mainly quiescent MuSCs. Despite the need for dynamic regulation of MuSC quiescence, relatively little is known about the determinants of this property. Here, we show that Suv4-20h1, an H4K20 dimethyltransferase, controls MuSC quiescence by promoting formation of facultative heterochromatin (fHC). Deletion of Suv4-20h1 reduces fHC and induces transcriptional activation and repositioning of the MyoD locus away from the heterochromatic nuclear periphery. These effects promote MuSC activation, resulting in stem cell depletion and impaired long-term muscle regeneration. Genetic reduction of MyoD expression rescues fHC formation and lost MuSC quiescence, restoring muscle regeneration capacity in Suv4-20h1 mutants. Together, these findings reveal that Suv4-20h1 actively regulates MuSC quiescence via fHC formation and control of the MyoD locus, thereby guarding and preserving the stem cell pool over a lifetime
Muscle stem cell activation in a mouse model of rotator cuff injury
Rotator cuff (RC) tears are frequently complicated by muscle atrophy. Muscle stem cells (MuSCs) repair damaged myofibers following injury, but their role in the prevention or pathogenesis of atrophy following RC tears remains undefined. We hypothesized that the RC MuSC population would be affected by supraspinatus (SS) and infraspinatus (IS) tendon transection (TT) compared to uninjured muscle in a mouse model of RC tear. C57BL6/J mice underwent unilateral SS and IS TT and contralateral sham surgery. At 3, 8, or 14 weeks after injury, mice were euthanized, and SS and IS were harvested for FACS sorting of CD31-/CD45-/Sca1-/ITGa7+/VCAM+ MuSCs or histological analysis. Ki-67+ MuSCs from injured muscle increased 3.4-fold at 3 weeks (pβ=β0.03) and 8.1-fold at 8 weeks (pβ=β0.04) following TT injury, but returned to baseline by 14 weeks (pβ=β0.91). Myod1 remained upregulated 3.3-fold at 3 weeks (pβ=β0.03) and 2.0-fold at 14 weeks (pβ=β0.0003), respectively. Myofiber cross-sectional area was decreased at both 3 and 14 weeks after injury, but the number of MuSCs per fiber remained relatively constant at 3 (pβ=β0.3) and 14 (pβ=β0.6) weeks after TT. In this study, we characterized the longitudinal effect of RC tendon injury on the MuSC population in supraspinatus and infraspinatus muscles. MuSCs are transiently activated, and are not depleted, in spite of persistent muscle atrophy. Β© 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1370-1376, 2018
Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase
Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins--HORMAD1 and HORMAD2--in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals
Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase
Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins-HORMAD1 and HORMAD2-in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals