3,837 research outputs found
Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets
It is shown that strong fluctuations preclude a hydrodynamic description of
transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of
hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode
coupling effects lead to infinite renormalizations of various transport
coefficients, and the actual macroscopic description is nonlocal. At T=0 these
effects are weakened due to the fluctuation-dissipation theorem, and the
renormalizations remain finite. Observable consequences of these results, as
manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur
Finite Temperature Spectral Densities of Momentum and R-Charge Correlators in Yang Mills Theory
We compute spectral densities of momentum and R-charge correlators in thermal
Yang Mills at strong coupling using the AdS/CFT correspondence. For
and smaller, the spectral density differs markedly from
perturbation theory; there is no kinetic theory peak. For large , the
spectral density oscillates around the zero-temperature result with an
exponentially decreasing amplitude. Contrast this with QCD where the spectral
density of the current-current correlator approaches the zero temperature
result like . Despite these marked differences with perturbation
theory, in Euclidean space-time the correlators differ by only from
the free result. The implications for Lattice QCD measurements of transport are
discussed.Comment: 18 pages, 3 figure
A generalized Chudley-Elliott vibration-jump model in activated atom surface diffusion
Here the authors provide a generalized Chudley-Elliott expression for
activated atom surface diffusion which takes into account the coupling between
both low-frequency vibrational motion (namely, the frustrated translational
modes) and diffusion. This expression is derived within the Gaussian
approximation framework for the intermediate scattering function at low
coverage. Moreover, inelastic contributions (arising from creation and
annihilation processes) to the full width at half maximum of the quasi-elastic
peak are also obtained.Comment: (5 pages, 2 figures; revised version
Chesapeake Bay wave climate : Thimble Shoals wave station, report and summary of wave observations, September 27, 1988 through October 17, 1989
The Virginia Institute of Marine Science, in cooperation with the Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, has identified as one of its major goals the systematic study of hydrodynamic processes that affect recreational, shoreline and benthic resources in the coastal zone of the Commonwealth. In pursuit of that goal, a long-term study of the wave climate in the Virginia portion of Chesapeake Bay was initiated in 1988 with support from the National Oceanographic and Atmospheric Administration through the Coastal Zone Management Program administered by the Virginia Council on the Environment (Grant Ho. HA88AA-D-CZ092). Past knowledge of wave properties in the Chesapeake Bay region has been conspicuous in its lack of an observational basis. Although inner shelf and deep water wave measurements have been made outside the Chesapeake Bay entrance, none of these have produced reliable directional information (Seymour et al., 1985). Therefore, before addressing certain long-term wave monitoring objectives, it was deemed essential to develop a basis for them by obtaining a representative (year-long) series of wave observations at one or more selected locations. The first of these has recently been completed for a station designated as VIMS BAY! located near Thimble Shoals to the west of the Chesapeake Bay entrance (Fig. 1). This report contains a summary of data for the initial year of continuous directional wave measurements made at the Thimble Shoals station
Bubble kinematics in a sheared foam
We characterize the kinematics of bubbles in a sheared two-dimensional foam
using statistical measures. We consider the distributions of both bubble
velocities and displacements. The results are discussed in the context of the
expected behavior for a thermal system and simulations of the bubble model.
There is general agreement between the experiments and the simulation, but
notable differences in the velocity distributions point to interesting elements
of the sheared foam not captured by prevalent models
On the origin of the -transition in liquid Sulphur
Developing a novel experimental technique, we applied photon correlation
spectroscopy using infrared radiation in liquid Sulphur around ,
i.e. in the temperature range where an abrupt increase in viscosity by four
orders of magnitude is observed upon heating within few degrees. This allowed
us - overcoming photo-induced and absorption effects at visible wavelengths -
to reveal a chain relaxation process with characteristic time in the ms range.
These results do rehabilitate the validity of the Maxwell relation in Sulphur
from an apparent failure, allowing rationalizing the mechanical and
thermodynamic behavior of this system within a viscoelastic scenario.Comment: 5 pages, 4 eps figures, accepted in Phys. Rev. Let
Critical dynamics of ballistic and Brownian particles in a heterogeneous environment
The dynamic properties of a classical tracer particle in a random, disordered
medium are investigated close to the localization transition. For Lorentz
models obeying Newtonian and diffusive motion at the microscale, we have
performed large-scale computer simulations, demonstrating that universality
holds at long times in the immediate vicinity of the transition. The scaling
function describing the crossover from anomalous transport to diffusive motion
is found to vary extremely slowly and spans at least 5 decades in time. To
extract the scaling function, one has to allow for the leading universal
corrections to scaling. Our findings suggest that apparent power laws with
varying exponents generically occur and dominate experimentally accessible time
windows as soon as the heterogeneities cover a decade in length scale. We
extract the divergent length scales, quantify the spatial heterogeneities in
terms of the non-Gaussian parameter, and corroborate our results by a thorough
finite-size analysis.Comment: 14 page
Thermodiffusion in model nanofluids by molecular dynamics simulations
In this work, a new algorithm is proposed to compute single particle
(infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics
simulations through the estimation of the thermophoretic force that applies on
a solute particle. This scheme is shown to provide consistent results for
simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic
nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion
amplitude, as well as thermal conductivity, decrease with nanoparticles
concentration. Then, in nanofluids in the liquid state, by changing the nature
of the nanoparticle (size, mass and internal stiffness) and of the solvent
(quality and viscosity) various trends are exhibited. In all cases the single
particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate
toward the cold area. The single particle thermal diffusion 2 coefficient is
shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4
nm), whereas it increases with the quality of the solvent and is inversely
proportional to the viscosity of the fluid. In addition, this coefficient is
shown to be independent of the mass of the nanoparticle and to increase with
the stiffness of the nanoparticle internal bonds. Besides, for these
configurations, the mass diffusion coefficient behavior appears to be
consistent with a Stokes-Einstein like law
Investigation of the water table in a tidal beach : final report
I. Instrumentation for Measurement of Water Table Fluctuations by John D. Boon, III, and W. Harrison II. The Beach Water Table as a Response Variable of the System by L. E. Fausak III. Changes in Foreshore Sand Volume: Role of Fluctuations in Water Table and Ocean Still Water Level by W. Harrison IV. One-dimensional Finite Element Analysis of the Groundwater Flow by W. Harrison, C. S. Fang, and S. N. Wang V. Two-dimensional Finite Element Analysis of the Groundwater Flow by C. S. Fang, S. N. Wang, and W. Harriso
- …