The dynamic properties of a classical tracer particle in a random, disordered
medium are investigated close to the localization transition. For Lorentz
models obeying Newtonian and diffusive motion at the microscale, we have
performed large-scale computer simulations, demonstrating that universality
holds at long times in the immediate vicinity of the transition. The scaling
function describing the crossover from anomalous transport to diffusive motion
is found to vary extremely slowly and spans at least 5 decades in time. To
extract the scaling function, one has to allow for the leading universal
corrections to scaling. Our findings suggest that apparent power laws with
varying exponents generically occur and dominate experimentally accessible time
windows as soon as the heterogeneities cover a decade in length scale. We
extract the divergent length scales, quantify the spatial heterogeneities in
terms of the non-Gaussian parameter, and corroborate our results by a thorough
finite-size analysis.Comment: 14 page