58 research outputs found

    CO2 Uptake Model of Biomass Silica Foamed Concrete

    Get PDF
    The cement industry contributes about 5% to global anthropogenic CO2 emissions. CO2 isemitted from the calcination process of limestone, from combustion of fuels in the kiln, aswell as from power generation. A model of CO2 uptake by biomass silica foamed concrete isproposed as a potential mitigation strategy against CO2-emission. The key parameters in thecement production process are defined and the total CO2 emissions are reviewed. Acomparison between CO2 emission and CO2 uptake by carbonation is made. The forecastingof CO2 uptake by carbonation is modeled with the use of Microsoft Excel. The CO2 emissionmitigation options are discussed based on the modeling on CO2 uptake by biomass silicafoamed concrete. The proposed foamed concrete absorbs CO2 42.7% faster than the normalPortland cement concrete, with a regression accuracy of 0.98. Successful deployment couldcontribute towards sustainable development while benefiting from the carbon credits

    Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique

    Get PDF
    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization

    The sweet spot in sustainability: a framework for corporate assessment in sugar manufacturing

    Get PDF
    The assessment of corporate sustainability has become an increasingly important topic, both within academia and in industry. For manufacturing companies to conform to their commitments to sustainable development, a standard and reliable measurement framework is required. There is, however, a lack of sector-specific and empirical research in many areas, including the sugar industry. This paper presents an empirically developed framework for the assessment of corporate sustainability within the Thai sugar industry. Multiple case studies were conducted, and a survey using questionnaires was also employed to enhance the power of generalisation. The developed framework is an accurate and reliable measurement instrument of corporate sustainability, and guidelines to assess qualitative criteria are put forward. The proposed framework can be used for a company’s self-assessment and for guiding practitioners in performance improvement and policy decision-maki

    Comparison of Enzymatic and Non-Enzymatic Means of Dissociating Adherent Monolayers of Mesenchymal Stem Cells

    Get PDF
    The dissociation of adherent mesenchymal stem cell (MSC) monolayers with trypsin and enzyme-free dissociation buffer was compared. A significantly lower proportion of viable cells were obtained with enzyme-free dissociation buffers compared to trypsin. Subsequently, the dissociated cells were re-seeded on new cell culture dishes and were subjected to the MTT assay 24 h later. The proportion of viable cells that reattached was significantly lower for cells obtained by dissociation with enzyme-free dissociation buffer compared to trypsin. Frozen–thawed MSC displayed a similar trend, yielding consistently higher cell viability and reattachment rates when dissociated with trypsin compared to enzyme-free dissociation buffer. It was also demonstrated that exposure of trypsin-dissociated MSC to enzyme-free dissociation buffer for 1 h had no significant detrimental effect on cell viability

    Strategies for deploying triple artemisinin-based combination therapy in the Greater Mekong Subregion

    Get PDF
    Background This is a qualitative study to identify implementation challenges for deploying triple artemisinin-based combination therapy (TACT) in the Greater Mekong Subregion (GMS) of Southeast Asia and to explore strategies to overcome these challenges. Methods In-depth interviews were conducted in three countries that have repeatedly been confronted with ACT failures: Cambodia, Vietnam, and Lao PDR. Thirty-nine key stakeholders in the healthcare systems in these countries were interviewed. One participatory workshop was conducted in Cambodia, where scenarios for potential TACT deployment were discussed. Results The results section is organized around four strategic themes that emerged from the data: policy support, data and evidence, logistics and operation, and downstream engagement. The study revealed that countries in the GMS currently rely on ACT to eliminate Plasmodium falciparum malaria by 2025. TACT is, however, considered to be a useful backup strategy in case of future treatment failures and to prevent the re-establishment of malaria. The study showed that a major challenge ahead is to engage decision makers and healthcare providers into deploying TACT, given the low case incidence of falciparum malaria in the GMS. Interview respondents were also skeptical whether healthcare providers would be willing to engage in new therapies for a disease they hardly encounter anymore. Hence, elaborate information dissemination strategies were considered appropriate and these strategies should especially target village malaria workers. Respondents proposed several regulatory and programmatic strategies to anticipate the formation of TACT markets in the GMS. These strategies include early dossier submission to streamline regulatory procedures, early stakeholder engagement strategies to shorten implementation timelines, and inclusion of TACT as second-line therapy to accelerate their introduction in case they are urgently needed. Conclusions This paper presents a qualitative study to identify implementation challenges for deploying TACT in the GMS and to explore strategies to overcome these challenges. The findings could benefit researchers and decision makers in strategizing towards potential future deployment of TACT in the GMS to combat artemisinin and partner drug resistance

    Koilocytes indicate a role for human papilloma virus in breast cancer

    Get PDF
    Background: High-risk human papilloma viruses (HPVs) are candidates as causal viruses in breast cancer. The scientific challenge is to determine whether HPVs are causal and not merely passengers or parasites. Studies of HPV-related koilocytes in breast cancer offer an opportunity to address this crucial issue. Koilocytes are epithelial cells characterised by perinuclear haloes surrounding condensed nuclei and are commonly present in cervical intraepithelial neoplasia. Koilocytosis is accepted as pathognomonic (characteristic of a particular disease) of HPV infection. The aim of this investigation is to determine whether putative koilocytes in normal and malignant breast tissues are because of HPV infection. Methods: Archival formalin-fixed normal and malignant breast specimens were investigated by histology, in situ PCR with confirmation of the findings by standard PCR and sequencing of the products, plus immunohistochemistry to identify HPV E6 oncoproteins. Results: human papilloma virus-associated koilocytes were present in normal breast skin and lobules and in the breast skin and cancer tissue of patients with ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDCs). Interpretation: As koilocytes are known to be the precursors of some HPV-associated cervical cancer, it follows that HPVs may be causally associated with breast cancer.6 page(s

    Nitrate Respiration Protects Hypoxic Mycobacterium tuberculosis Against Acid- and Reactive Nitrogen Species Stresses

    Get PDF
    There are strong evidences that Mycobacterium tuberculosis survives in a non-replicating state in the absence of oxygen in closed lesions and granuloma in vivo. In addition, M. tuberculosis is acid-resistant, allowing mycobacteria to survive in acidic, inflamed lesions. The ability of M. tuberculosis to resist to acid was recently shown to contribute to the bacillus virulence although the mechanisms involved have yet to be deciphered. In this study, we report that M. tuberculosis resistance to acid is oxygen-dependent; whereas aerobic mycobacteria were resistant to a mild acid challenge (pH 5.5) as previously reported, we found microaerophilic and hypoxic mycobacteria to be more sensitive to acid. In hypoxic conditions, mild-acidity promoted the dissipation of the protonmotive force, rapid ATP depletion and cell death. Exogenous nitrate, the most effective alternate terminal electron acceptor after molecular oxygen, protected hypoxic mycobacteria from acid stress. Nitrate-mediated resistance to acidity was not observed for a respiratory nitrate reductase NarGH knock-out mutant strain. Furthermore, we found that nitrate respiration was equally important in protecting hypoxic non-replicating mycobacteria from radical nitrogen species toxicity. Overall, these data shed light on a new role for nitrate respiration in protecting M. tuberculosis from acidity and reactive nitrogen species, two environmental stresses likely encountered by the pathogen during the course of infection

    Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73.

    Get PDF
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers
    corecore