2,921 research outputs found

    Xray Tomographic Microscopic Studies a Resin Embedded Paint Sample from a Mechanical Failing Area in the Floor Tiles of The Art of Painting by Johannes Vermeer (1632-1675)

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201

    α\alpha-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite

    Full text link
    We have performed depolarized Impulsive Stimulated Scattering experiments to observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from \sim10 - 500 MHz. These measurements, in tandem with previously performed longitudinal and shear measurements, permit further analyses of the relaxation dynamics of TPP within the framework of the mode coupling theory (MCT). Our results provide evidence of α\alpha coupling between the shear and longitudinal degrees of freedom up to a decoupling temperature TcT_c = 231 K. A lower bound length scale of shear wave propagation in liquids verified the exponent predicted by theory in the vicinity of the decoupling temperature

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    Multi-Resolution Analysis and Fractional Quantum Hall Effect: an Equivalence Result

    Get PDF
    In this paper we prove that any multi-resolution analysis of \Lc^2(\R) produces, for some values of the filling factor, a single-electron wave function of the lowest Landau level (LLL) which, together with its (magnetic) translated, gives rise to an orthonormal set in the LLL. We also give the inverse construction. Moreover, we extend this procedure to the higher Landau levels and we discuss the analogies and the differences between this procedure and the one previously proposed by J.-P. Antoine and the author.Comment: Submitted to Journal Mathematical Physisc

    Fluctuating hydrodynamic modelling of fluids at the nanoscale

    Get PDF
    A good representation of mesoscopic fluids is required to combine with molecular simulations at larger length and time scales (De Fabritiis {\it et. al}, Phys. Rev. Lett. 97, 134501 (2006)). However, accurate computational models of the hydrodynamics of nanoscale molecular assemblies are lacking, at least in part because of the stochastic character of the underlying fluctuating hydrodynamic equations. Here we derive a finite volume discretization of the compressible isothermal fluctuating hydrodynamic equations over a regular grid in the Eulerian reference system. We apply it to fluids such as argon at arbitrary densities and water under ambient conditions. To that end, molecular dynamics simulations are used to derive the required fluid properties. The equilibrium state of the model is shown to be thermodynamically consistent and correctly reproduces linear hydrodynamics including relaxation of sound and shear modes. We also consider non-equilibrium states involving diffusion and convection in cavities with no-slip boundary conditions
    corecore